Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 5, pp 817–822 | Cite as

Adsorption Activity and Molecular Dynamics Study on Anti-corrosion Mechanism of Q235 Steel

  • Weiwei Zhang
  • Huijing Li
  • Yanchao Wu
  • Qi Luo
  • Huanhuan Liu
  • Lin Niu
Article

Abstract

The correlation between inhibition efficiency and molecular structures of the inhibitor during hydrochloric acid corrosion of Q235 steel was studied by quantum chemical calculations and molecular dynamics(MD) simulation. The proton affinity(PA) calculations demonstrated that 2-(quinolin-2-yl)quinazolin-4(3H)-one inhibitor has the tendency to be protonated in hydrochloric acid, which was in good agreement with experimental observations. Besides, quantum chemical parameters revealed that the protonated corrosion inhibitor molecules were more easily adsorbed on Q235 steel surface and improved the corrosion resistance of steel. MD simulations were implemented to search for the adsorption behavior of this molecule on Fe (110) surface, which might be used as a convenient tool for estimating the interaction mechanism between inhibitor and iron surface.

Keywords

Q235 steel Corrosion inhibition Density function theory Molecular dynamic simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zhang S., Tao Z., Li W., Hou B., Appl. Surf. Sci., 2009, 255, 6757CrossRefGoogle Scholar
  2. [2]
    Ayati N. S., Khandandel S., Momeni M., Moayed M. H., Davoodi A., Rahimizadeh M., Mater. Chem. Phys., 2001, 126, 873CrossRefGoogle Scholar
  3. [3]
    Askalany A. H., Mostafa S. I., Shalabi K., Eid A. M., Shaaban S., J. Mol. Liq., 2016, 223, 497CrossRefGoogle Scholar
  4. [4]
    Zhang W. W., Ma R., Li S., Liu Y., Niu L., Chem. Res. Chinese Universities, 2016, 32(5), 827CrossRefGoogle Scholar
  5. [5]
    Mistry B. M., Patel N. S., Sahoo S., Jauhari S., Bull. Mater. Sci., 2012, 35, 459CrossRefGoogle Scholar
  6. [6]
    Olasunkanmi L. O., Obot I. B., Kabanda M. M., J. Phys. Chem. C, 2015, 119, 16004CrossRefGoogle Scholar
  7. [7]
    Saha S. K., Ghosh P., Hens A., Murmu N. C., Physica E., 2015, 66, 332CrossRefGoogle Scholar
  8. [8]
    Kokalj A., Electrochim. Acta, 2010, 56, 745CrossRefGoogle Scholar
  9. [9]
    Zhang J., Zhao W. M., Guo W. Y., Wang Y., Li Z. P., Acta Phys. Chim. Sin., 2008, 24, 1239Google Scholar
  10. [10]
    Zhang W. W., Ma R., Liu H. H., Liu Y., Li S., Niu L., J. Mol. Liq., 2016, 222, 671CrossRefGoogle Scholar
  11. [11]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Pe-tersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Ku-din K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salva-dor P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Gaussian Inc., Wallingford CT, 2013 Google Scholar
  12. [12]
    Xiao L., Chu W., Sun W. J., Xue Y., Chem. Res. Chinese Universi-ties, 2017, 33(3), 422CrossRefGoogle Scholar
  13. [13]
    Liu N. N., Yu S., Ding Y. H., Chem. J. Chinese Universities, 2016, 37(11), 2006Google Scholar
  14. [14]
    Zeng J. P., Zhang J. Y., Gong G. X., Comput. Theor. Chem., 2011, 963, 110CrossRefGoogle Scholar
  15. [15]
    RameshKumar S., Danaee I., Rashvand Avei M., Vijayan M., J. Mol. Liq., 2015, 212, 168CrossRefGoogle Scholar
  16. [16]
    Danaee I., Gholami M., Rashvand Avei M., Maddahy M. H., J. Ind. Eng. Chem., 2015, 26, 81CrossRefGoogle Scholar
  17. [17]
    Makowski M., Raczyńska E. D., Chmurzyński L., J. Phys. Chem. A, 2001, 105, 869CrossRefGoogle Scholar
  18. [18]
    Raczyńska E. D., Darowska M., Dabkowska I., Decouzon M., Gal J. F., Maria P. C., Poliart C. D., J. Org. Chem., 2004, 69, 4023CrossRefGoogle Scholar
  19. [19]
    Raczyńska E. D., Makowski M., Gornicka E., Darowska M., Int. J. Mol. Sci., 2005, 6, 143CrossRefGoogle Scholar
  20. [20]
    Brigas A. F., Clegg W., Dillon C. J., J. Chem. Soc., Perkin Trans., 2001, 2, 1315CrossRefGoogle Scholar
  21. [21]
    Gece G., Corros. Sci., 2008, 50, 2981CrossRefGoogle Scholar
  22. [22]
    Wang J. K., Han L., Huang L., Zhang H. J., Li J. Y., Li S. S., Chem. J. Chinese Universities, 2017, 38(9), 1602Google Scholar
  23. [23]
    Cruz J., Garcia Ochoa E., Castrob M., J. Electrochem. Soc., 2003, 150, 26CrossRefGoogle Scholar
  24. [24]
    Aljourani J., Raeissi K., Golozar M. A., Corros. Sci., 2009, 51, 1836CrossRefGoogle Scholar
  25. [25]
    Yüce A. O., Mert B. D., Kardas G., Yazici B., Corros. Sci., 2014, 83, 310CrossRefGoogle Scholar
  26. [26]
    Mahdavian M., Ashhari S., Electrochim. Acta, 2010, 55, 1720CrossRefGoogle Scholar
  27. [27]
    Lukovits I., Kálmán E., Zucchi F., Corrosion, 2001, 57, 3CrossRefGoogle Scholar
  28. [28]
    Parr R. G., Yang W., J. Am. Chem. Soc., 1984, 106, 4049CrossRefGoogle Scholar
  29. [29]
    Fazal E., Yohannan Panicker C., Nagarajan S., Sudha B. S., Srivastava S. K., Harikumar B., Anto P. L., Spectrochim. Acta A, 2015, 145, 260CrossRefGoogle Scholar
  30. [30]
    Soltani N., Behpour M., Oguzie E. E., Mahluji M., Ghasemzadeh M. A., RSC Adv., 2015, 5, 11145CrossRefGoogle Scholar
  31. [31]
    Casewit C., Colwell K., Rappe A., J. Am. Chem. Soc., 1992, 114, 10046CrossRefGoogle Scholar
  32. [32]
    Arab S. T., Mater. Res. Bull., 2008, 43, 510CrossRefGoogle Scholar
  33. [33]
    Popova A., Christov M., Deligeorigiev T., Corrosion, 2003, 59, 756CrossRefGoogle Scholar
  34. [34]
    Saha Kr S., Hens A., Roy Chowdhury A., Lohar Kr A., Murmu N. C., Canad. Chem. Trans., 2014, 2, 489Google Scholar
  35. [35]
    Cao Z., Tang Y., Cang H., Xu J., Lu G., Jing W., Corros. Sci., 2014, 83, 292CrossRefGoogle Scholar
  36. [36]
    Allen M. P., Tildesley D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1987 Google Scholar
  37. [37]
    Shi W. Y., Ding C., Yan J. L., Desalination, 2012, 291, 8CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Marine Science and TechnologyHarbin Institute of TechnologyWeihaiP. R. China
  2. 2.School of Chemistry and Chemical EngineeringShandong UniversityJinanP. R. China

Personalised recommendations