Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 197–202 | Cite as

Microwave-assisted Synthesis of New 1,2,3-Triazoles Bearing an Isoxazole Ring by the Azide-alkyne Cycloaddition Click Chemistry

  • Jing Li
  • Hongwei Liu
  • Fanyu Meng
  • Liuqing Yan
  • Yanpeng Shi
  • Yumin Zhang
  • Qiang Gu
Article
  • 13 Downloads

Abstract

A comparison synthesis of 1,2,3-triazoles bearing isoxazole ether was developed between conventional and microwave-assisted heating. Single/double 1,2,3-triazoles bearing isoxazole ether were synthesized by click reaction starting from substituted isoxazolyl alkyne compounds and substituted benzyl azide compounds or neopen-tylglycol diazide in the presence of copper(I) that in-situ generated. Herein, the effect of different catalysts on the yield was researched by conventional method, and the optimal catalyst was selected. The structures of all the synthe-sized compounds were confirmed by MS, FTIR, 1H and 13C NMR spectroscopies. Moreover, the crystal structure of 5-{[(1-benzyl-1H-1,2,3-triazol-4-yl)methoxy]methyl}-3-(4-fluorophenyl)isoxazole(2h) was determined.

Keywords

Microwave-assisted heating 1,2,3-Triazole Isoxazole Azide-alkyne Click chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7298_MOESM1_ESM.pdf (1.7 mb)
Microwave-assisted synthesis of new 1,2,3-triazoles bearing an isoxazole ring by the azide-alkyne cycloaddition click chemistry

References

  1. [1]
    Pedada S. R., Yarla N. S., Tambade P. J., Dhananjaya B. L., Bishayee A., Arunasree K. M., Philip G. H., Dharmapuri G., Aliev G., Putta S., Rangaiah G., Eur. J. Med. Chem., 2016, 112, 289CrossRefGoogle Scholar
  2. [2]
    Pokhodylo N., Shyyka O., Matiychuk V., Med. Chem. Res., 2014, 23(5), 2426CrossRefGoogle Scholar
  3. [3]
    Barbachyn M. R., Cleek G. J., Dolak L. A., Garmon S. A., Morris, J., Seest E. P., Thomas R. C., Toops D. S., Watt W., Wishka D. G., Ford C. W., Zurenko G. E., Hamel J. C., Schaadt R. D., Stapert D., Yagi B. H., Adams W. J., Friis J. M., Slatter J. G., Sams J. P., Oien N. L., Zaya M. J., Wienkers L. C., Wynalda M. A., J. Med Chem., 2003, 46(2), 284CrossRefGoogle Scholar
  4. [4]
    Ali O. M., Amr A. E. E., Mostafa E. E., Res. Chem. Intermediates, 2014, 40(4), 1545CrossRefGoogle Scholar
  5. [5]
    Miyakoshi H., Miyahara S., Yokogawa T., Endoh K., Muto T., Yano W., Wakasa T., Ueno H., Chong K. T., Taguchi J., Nomura M., Takao Y., Fujioka A., Hashimoto A., Itou K., Yamamura K., Shuto S., Nagasawa H., Fukuoka M., J. Med. Chem., 2012, 55(14), 6427CrossRefGoogle Scholar
  6. [6]
    Gupta R. A.,. Kaskhedikar S. G., Med. Chem. Res., 2013, 22(8), 3863CrossRefGoogle Scholar
  7. [7]
    Reddy B. J., Reddy V. P., Goud G. L., Rao Y. J., Premkumar S. K., Russ. J. Gen. Chem., 2016, 86(6), 1424CrossRefGoogle Scholar
  8. [8]
    Garudachari B., Isloor A. M., Satyanarayana M. N., Fun H. K., Hegde G., Eur. J. Med. Chem., 2014, 74, 324CrossRefGoogle Scholar
  9. [9]
    Supuran C. T., Nat. Rev. Drug Discov., 2008, 7(2), 168CrossRefGoogle Scholar
  10. [10]
    Botnar R. M., Kim W. Y., Danias P. G., Stuber M., Flamm S. D., New Engl. J. Med., 2001, 345(26), 1863CrossRefGoogle Scholar
  11. [11]
    Isik S., Kockar F., Aydin M., Arslan O., Guler O. O., Innocenti A., Scozzafava A., Supuran C. T., Bioorgan. Med. Chem., 2009, 17(3), 1158CrossRefGoogle Scholar
  12. [12]
    Gawin R., De Clercq E., Naesens L., Koszytkowska-Stawińska M., Bioorgan. Med. Chem., 2008, 16(18), 8379CrossRefGoogle Scholar
  13. [13]
    Kamal A., Shankaraiah N., Devaiah V., Reddy K. L., Juvekar A., Sen S., Zingde S., Bioorg. Med. Chem. Lett., 2008, 18(4), 1468CrossRefGoogle Scholar
  14. [14]
    Kumar A., Ahmad I., Chhikara B. S., Tiwari R., Mandal D., Parang K., Bioorg. Med. Chem. Lett., 2011, 21(5), 1342CrossRefGoogle Scholar
  15. [15]
    Weber A., Casini A., Heine A., Kuhn D., Supuran C. T., Scozzafava A., Klebe G., J. Med. Chem., 2004, 47(3), 550CrossRefGoogle Scholar
  16. [16]
    Pyta K., Klich K., Domagalska J., Przybylski P., Eur. J. Med. Chem., 2014, 84, 651CrossRefGoogle Scholar
  17. [17]
    Pereira G. R., Brandão G. C., Arantes L. M., de Oliveira H. A., de Paula R. C., do Nascimento M. F. A., de Oliveira A. B., Eur. J. Med. Chem., 2014, 73, 295CrossRefGoogle Scholar
  18. [18]
    Aufort M., Herscovici J., Bouhours P., Moreau N., Girard C., Bioorg. Med. Chem. Lett., 2008, 18(3), 1195CrossRefGoogle Scholar
  19. [19]
    Baraniak D., Kacprzak K., Celewicz L., Bioorg. Med. Chem. Lett., 2011, 21(2), 723CrossRefGoogle Scholar
  20. [20]
    Farooq S., Hussain A., Hamid A., Qurishi M. A., Koul S., Eur. J. Med. Chem., 2014, 84, 545CrossRefGoogle Scholar
  21. [21]
    Singh P., Sachdeva S., Raj R., Kumar V., Mahajan M. P., Nasser S., Chibale K., Bioorg. Med. Chem. Lett., 2011, 21(15), 4561CrossRefGoogle Scholar
  22. [22]
    Singh H., Sindhu J., Khurana J. M., Sharma C., Aneja K. R., RSC Adv., 2014, 4(12), 5915CrossRefGoogle Scholar
  23. [23]
    Tan W., Li Q., Li W., Dong F., Guo Z., Int. J. Biol. Macromol., 2016, 82, 404CrossRefGoogle Scholar
  24. [24]
    Wang G., Peng Z., Wang J., Li J., Li X., Bioorg. Med. Chem. Lett., 2016, 26(23), 5719CrossRefGoogle Scholar
  25. [25]
    Harju K., Vahermo M., Mutikainen I., Yli-Kauhaluoma J., J. Comb. Chem., 2003, 5(6), 826CrossRefGoogle Scholar
  26. [26]
    Suzuki M., Kato N., Kanai M., Shibasaki M., Org. Lett., 2005, 7(13), 2527CrossRefGoogle Scholar
  27. [27]
    Liu X. M., Quan L. D., Tian J., Laquer F. C., Ciborowski P., Wang D., Biomacromolecules, 2010, 11(10), 2621CrossRefGoogle Scholar
  28. [28]
    Chan T. R., Hilgraf R., Sharpless K. B., Fokin V. V., Org. Lett., 2004, 6(17), 2853CrossRefGoogle Scholar
  29. [29]
    Wang Q., Chan T. R., Hilgraf R., Fokin V. V., Sharpless K. B., Finn M. G., J. Am. Chem. Soc., 2003, 125(11), 3192CrossRefGoogle Scholar
  30. [30]
    Service R. F., Science(New York), 2008, 320(5878), 868CrossRefGoogle Scholar
  31. [31]
    Weisberg S. P., McCann D., Desai M., Rosenbaum M., Leibel R. L., Ferrante A. W., J. Clin. Invest., 2003, 112(12), 1796CrossRefGoogle Scholar
  32. [32]
    Kumar K., Sagar S., Esau L., Kaur M., Kumar V., Eur. J. Med. Chem., 2012, 58, 153CrossRefGoogle Scholar
  33. [33]
    Wittenberger S. J., J. Org. Chem., 1996, 61(1), 356CrossRefGoogle Scholar
  34. [34]
    Martins M. A., Flores A. F., Bastos G. P., Sinhorin A., Bonacorso H. G., Tetrahedron Lett., 2000, 41(3), 293CrossRefGoogle Scholar
  35. [35]
    Gucma M., Golebiewski W. M., Morytz B., Charville H., Whiting A., Lett. Org. Chem., 2010, 7(7), 502CrossRefGoogle Scholar
  36. [36]
    Yermolina M. V., Wang J., Caffrey M., Rong L. L., Wardrop D. J., J. Med. Chem., 2011, 54(3), 765CrossRefGoogle Scholar
  37. [37]
    Newton T. W., Herbicidal Isoxazole and Isothiazole-5-carboxamides, US5780393, 1998 Google Scholar
  38. [38]
    Tang X., Li Z., Li Y., Liu W., Yu P., Li L., Guo Y., Yang C., Chem. Res. Chinese Universities, 2015, 31(1), 71CrossRefGoogle Scholar
  39. [39]
    Yoshimura A., Middleton K. R., Todora A. D., Kastern B. J., Koski S. R., Maskaev A. V., Zhdankin V. V., Org. Lett., 2013, 15(15), 4010CrossRefGoogle Scholar
  40. [40]
    Mao M. Z., Li Y. X., Zhou Y. Y., Yang X. P., Zhang X. L., Zhang X., Li Z. M., Chem. Res. Chinese Universities, 2013, 29(5), 900CrossRefGoogle Scholar
  41. [41]
    Chassaing S., Kumarraja M., Sani Souna Sido A., Pale P., Sommer J., Org. Lett., 2007, 9(5), 883CrossRefGoogle Scholar
  42. [42]
    Tiwari V. K., Mishra B. B., Mishra K. B., Mishra N., Singh A. S., Chen X., Chem. Rev., 2016, 116(5), 3086CrossRefGoogle Scholar
  43. [43]
    Suman P., Murthy T. R., Rajkumar K., Srikanth D., Dayakar C., Ki-shor C., Raju B. C., Eur. J. Med. Chem., 2015, 90, 603CrossRefGoogle Scholar
  44. [44]
    Souza F. B., Pimenta D. C., Stefani H. A., Tetrahedron Lett., 2016, 57(14), 1592CrossRefGoogle Scholar
  45. [45]
    Driowya M., Puissant A., Robert G., Auberger P., Benhida R., Bou-grin K., Ultrason. Sonochem., 2012, 19(6), 1132CrossRefGoogle Scholar
  46. [46]
    Jana S., Thomas J., Dehaen W., J. Org. Chem., 2016, 81(24), 12426CrossRefGoogle Scholar
  47. [47]
    Friscourt F., Boons G. J., Cheminform, 2011, 42(8), 4936CrossRefGoogle Scholar
  48. [48]
    Medvedeva A. S., Demina M. M., Kon’Kova T. V., Nguyen T. L. H., Afonin A. V., Ushakov I. A., Tetrahedron, 2017, 73, 3979CrossRefGoogle Scholar
  49. [49]
    Sheldrick G. M., SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, 1997 Google Scholar
  50. [50]
    Sheldrick G. M., SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, 1997 Google Scholar
  51. [51]
    Zhang D. W., Lin F., Li B. C., Liu H. W., Zhao T. Q., Zhang Y. M., Gu Q., Chem. Pap., 2015, 69(11), 1500CrossRefGoogle Scholar
  52. [52]
    Zhu W., Ma D., Chem. Commun., 2004, 35(7), 888CrossRefGoogle Scholar
  53. [53]
    Rostovtsev V. V., Green L. G., Fokin V. V., Sharpless K. B., Angew. Chem., 2002, 114(14), 2708CrossRefGoogle Scholar
  54. [54]
    Ahlquist M., Fokin V. V., Organometallics, 2007, 26(18), 4389CrossRefGoogle Scholar
  55. [55]
    Issa Y. M., Hassib H. B., Abdelaal H. E., Spectrochim. Acta A, 2009, 74, 902CrossRefGoogle Scholar
  56. [56]
    Clinical and Laboratory Standards Institute, NCCLS Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Proposed Standard. NCCLS Document M38-A, Philadelphia, U.S.A., 1998, 18, 1Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jing Li
    • 1
  • Hongwei Liu
    • 1
  • Fanyu Meng
    • 1
  • Liuqing Yan
    • 1
  • Yanpeng Shi
    • 1
  • Yumin Zhang
    • 1
    • 2
  • Qiang Gu
    • 1
    • 2
  1. 1.College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.National-Local Joint Engineering Laboratory of In-situ ConversionDrilling and Exploitation Technology for Oil ShaleChangchunP. R. China

Personalised recommendations