Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 203–211 | Cite as

Controlled Release of Curcumin via Folic Acid Conjugated Magnetic Drug Delivery System

  • Shengmei Song
  • Minglu Li
  • Xiaojuan Gong
  • Hui Han
  • Yehong Zhou
  • Li Wang
  • Shaomin Shuang
  • Chuan Dong
Article
  • 12 Downloads

Abstract

In the paper, folic acid(FA)-mediated and β-cyclodextrin(β-CD) derivatives functionalized magnetic Fe3O4 nanoparticles(MNPs) were successfully prepared as drug carriers for the targeted delivery and controlled release of water-insoluble anticancer drug. FA-sulfobutyl ether-β-CD-MNPs(FA-SBE-β-CD-MNPs), FA-hydroxypropyl-β-CD-MNPs(FA-HP-β-CD-MNPs) and FA-carboxymethyl-β-CD-MNPs(FA-CM-β-CD-MNPs) were fabricated, and the loading efficiency and relative entrapment rate of curcumin are 12.04 mg/g, 95.56% for FA-SBE-β-CD-MNPs, 9.6 mg/g, 81.63% for FA-HP-β-CD-MNPs and 7.88 mg/g, 85.28% for FA-CM-β-CD-MNPs, respectively. Meanwhile, at pH=5.0, the optimal release rate of curcumin is about 46.07% for FA-SBE-β-CD-MNPs in 5 h. Cellular uptake indicates that curcumin can be selectively transported to targeting site and released from the internalized carriers. The in vitro cytotoxicity reveals that non-toxic FA-SBE-β-CD-MNPs have excellent biocompatibility on HepG2 cells in the tested concentrations. Therefore, FA-SBE-β-CD-MNPs could provide a promising platform for the targeting delivery of water insoluble anti-cancer drugs for different treatment needs of cancer therapy.

Keywords

Folic acid β-Cyclodextrin Anti-cancer drug Targeted delivery Magnetic nanoparticle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yoo J. W., Lee C. H., J. Control. Release, 2006, 112(1), 1CrossRefGoogle Scholar
  2. [2]
    Yang F., Hu J., Yang D., Long J., Luo G. P., Jin C., Yu X. J., Xu J., Wang C. C., Ni Q. X., Fu D. L., Nanomedicine, 2009, 4(3), 317CrossRefGoogle Scholar
  3. [3]
    Torchilin V. P., Nat. Rev. Drug Discovery, 2014, 13(11), 813CrossRefGoogle Scholar
  4. [4]
    Malmsten M., Soft Mater., 2006, 2(9), 760CrossRefGoogle Scholar
  5. [5]
    Kost J., Langer R., Adv. Drug Deliver Rev., 2012, 6(1―3), 327CrossRefGoogle Scholar
  6. [6]
    Alarcon C. D. L. H., Pennadam S., Alexander C., Chem. Soc. Rev., 2005, 34(3), 276CrossRefGoogle Scholar
  7. [7]
    Yang D., Yang F., Hu J., Long J., Wang C., Fu D., Ni Q., Chem. Commun., 2009, 29(29), 4447CrossRefGoogle Scholar
  8. [8]
    Kohler N., Sun C., Fichtenholtz A., Gunn J., Fang C., Zhang M. Q., Small, 2010, 2(6), 785CrossRefGoogle Scholar
  9. [9]
    Iram M., Guo C., Guan Y. P., Ishfaq A., Liu H. Z., J. Hazard Mater., 2010, 181(1―3), 1039CrossRefGoogle Scholar
  10. [10]
    Zhu X. M., Yuan J., Leung K. C., Lee S. F., Sham K. W., Cheng C. H., Au D. W., Teng G. J., Ahuja A. T., Wang Y. X., Nanoscale, 2012, 4(18), 5744CrossRefGoogle Scholar
  11. [11]
    Zhu Y., Fang Y., Kaskel S., J. Phys. Chem. C, 2010, 114(39), 16382CrossRefGoogle Scholar
  12. [12]
    Zhu L., Kate P., Torchilin V. P., ACS Nano, 2012, 6(4), 3491CrossRefGoogle Scholar
  13. [13]
    Zhong Y. J., Shao L. H., Li Y., Int. J. Oncol., 2013, 42(2), 373CrossRefGoogle Scholar
  14. [14]
    Yang Y., Pan D., Luo K., Li L., Gu Z., Biomaterials, 2013, 34(33), 8430CrossRefGoogle Scholar
  15. [15]
    Tsai C. P., Chen C. Y., Hung Y., Chang F. H., Mou C. Y., J. Mater. Chem., 2009, 19(32), 5737CrossRefGoogle Scholar
  16. [16]
    She W., Li N., Luo K., Guo C., Wang G., Geng Y., Gu Z., Biomate-rials, 2013, 34(9), 2252CrossRefGoogle Scholar
  17. [17]
    Lee S. Y., Kim S., Tyler J., Park K., Cheng J. X., Biomaterials, 2013, 34(2) 552CrossRefGoogle Scholar
  18. [18]
    Brevet D., Gary-Bobo M., Raehm L., Richeter S., Hocine O., Amro K., Loock B., Couleaud P., Frochot C., Morère A., Maillard P., Gar-cia M., Durand J. O., Chem. Commun., 2009, 12(12), 1475CrossRefGoogle Scholar
  19. [19]
    Lübbe A. S., Bergemann C., Huhnt W., Fricke T., Riess H., Brock J. W., Huhn D., Cancer Res., 1996, 56(20), 4694Google Scholar
  20. [20]
    Plank C., Nat. Nanotechnol., 2009, 4(9), 544CrossRefGoogle Scholar
  21. [21]
    Wang X., Xu D., Lu W., Liu J., Liu Q., Jing X., Wang J., Chem. J. Chinese Universities, 2017, 38(11), 1927Google Scholar
  22. [22]
    Caliceti P., Salmaso S., Semenzato A., Carofiglio T., Fornasier R., Fermeqlia M., Ferrone M., Pricl S., Bioconjugate Chem., 2003, 14(5), 899CrossRefGoogle Scholar
  23. [23]
    Tudisco C., Oliveri V., Cantarella M., Vecchio G., Condorelli G. G., Eur. J. Inorg. Chem., 2012, (32), 5323CrossRefGoogle Scholar
  24. [24]
    Chen L., Berry R. M., Tam K. C., ACS Sustain. Chem. Eng., 2014, 2(4), 951CrossRefGoogle Scholar
  25. [25]
    Huang L. Z., Wang H. X., Li B., Li E. D., Zhou Y. H., Yang Y. G., Dong C., Shuang S. M., J. Incl. Phenom. Macrocycl. Chem., 2014, 80(3/4), 209CrossRefGoogle Scholar
  26. [26]
    Badruddoza A. Z., Rahman M. T., Ghosh S., Hossain M. Z., Shi J., Hidajat K., Uddin M. S., Carbohyd. Polym., 2013, 95(1), 449CrossRefGoogle Scholar
  27. [27]
    Salem M., Xia Y., Allan A., Rohaniac S., Gillies E. R., RSC Adv., 2015, 5(47), 37521CrossRefGoogle Scholar
  28. [28]
    Lubbad A., Oriowo M. A., Khan I., Mol. Cell. Biochem., 2009, 322(1/2), 127CrossRefGoogle Scholar
  29. [29]
    Yang X., Zhang D., Song L., Xu Q., Xu H., Liu K., Chem. J. Chinese Universities, 2017, 38(9), 1549CrossRefGoogle Scholar
  30. [30]
    Wongcharoen W., Phrommintikul A., Int. J. Cardiol., 2009, 133(2), 145CrossRefGoogle Scholar
  31. [31]
    Kumar A., Ahuja A., Ali J., Baboota S., Crit. Rev. Ther. Drug, 2010, 27(4), 279CrossRefGoogle Scholar
  32. [32]
    Galia A., Navarre E., Scialdone O., Ferreira M., Filardo G., Tilloy S., Monflier E., J. Phys. Chem. B, 2007, 111(10), 2573CrossRefGoogle Scholar
  33. [33]
    Mangolim C. S., Moriwaki C., Nogueira A. C., Sato F., Baesso M. L., Neto A. M., Matioli G., Food Chem., 2014, 153(153), 361CrossRefGoogle Scholar
  34. [34]
    Cutrignelli A., Lopedota A., Denora N., Iacobazzi R. M., Fanizza E., Laquintana V., Perrone M., Maggi V., Franco M., J. Pharm. Sci., 2014, 103(12), 3932CrossRefGoogle Scholar
  35. [35]
    Popat A., Karmakar S., Jambhrunkar S., Xu C., Yu C., Colloid Sur-face B, 2014, 117(5), 520CrossRefGoogle Scholar
  36. [36]
    Hu J., Shao D., Chen C., Sheng G., Li J., Wang X., Nagatsu M., J. Phys. Chem. B, 2010, 114(20), 6779CrossRefGoogle Scholar
  37. [37]
    Banerjee S. S., Chen D. H., Chem. Mater., 2007, 19(19), 6345CrossRefGoogle Scholar
  38. [38]
    Cao H., He J., Deng L., Gao X., Appl. Surf. Sci., 2009, 255(18), 7974CrossRefGoogle Scholar
  39. [39]
    Zhou Y., Wu H., Fan L., Ma J., Shuang S., J. Anal. Sci., 2013, 29(5), 673Google Scholar
  40. [40]
    Yallapu M. M., Jaggi M., Chauhan S. C., Colloid Surface B, 2010, 79(1), 113CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shengmei Song
    • 1
  • Minglu Li
    • 1
  • Xiaojuan Gong
    • 1
  • Hui Han
    • 1
  • Yehong Zhou
    • 1
  • Li Wang
    • 1
  • Shaomin Shuang
    • 1
  • Chuan Dong
    • 1
  1. 1.Institute of Environmental Science, Department of Chemistry and Chemical EngineeringShanxi UniversityTaiyuanP. R. China

Personalised recommendations