Chemical Research in Chinese Universities

, Volume 33, Issue 4, pp 623–630 | Cite as

Computational study on mechanisms of C2H5O2+OH reaction and properties of C2H5O3H complex

  • Yanli Liu
  • Long Chen
  • Dongping Chen
  • Weina Wang
  • Fengyi Liu
  • Wenliang WangEmail author


A comprehensive theoretical study on the bimolecular reaction of C2H5O2 with OH radicals was performed at the CCSD(T)/6-311++G(2df,2p)//B3LYP/6-311+G(d,p) level of theory. The calculation results show that C2H5O2 + OH reaction proceeds on both the singlet and the triplet potential energy surfaces(PESs). On the singlet PES, the favorable pathway is the addition of OH radical to the terminal oxygen atom of C2H5O2 radical, leading to the formation of trioxide C2H5O3H with a barrierless process. Then, the trioxide directly decomposes to the products C2H5O and HO2 radicals. On the triplet PES, the predominant pathways are α and β hydrogen atom abstractions of C2H5O2 radical by OH radical-forming products 3CH3CHO2+H2O and 3CH2CH2O2+H2O, and the corresponding barriers are 12.02(3TS8) and 19.19 kJ/mol(3TS9), respectively. In addition, the comprehensive properties of trioxide C2H5O3H were investigated for the first time. The results indicate that the trioxide complex RC1 can exist stably in the atmosphere owing to a significantly large and negative enthalpy of formation(‒118.44 kJ/mol) as well as a high first excitation energy(5.94 eV).


C2H5O2 radical Trioxide C2H5O3H complex Reaction mechanism Enthalpy of formation First excited energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2017_7055_MOESM1_ESM.pdf (576 kb)
Computational Study on Mechanisms of C2H5O2 + OH Reaction and Properties of C2H5O3H Complex


  1. [1]
    Wallington T. J., Dagaut P., Kurylo M. J., Chem. Rev., 1992, 92, 667CrossRefGoogle Scholar
  2. [2]
    Stone D., Whalley L. K., Heard D. E., Chem. Soc. Rev., 2012, 41, 6348CrossRefGoogle Scholar
  3. [3]
    Orlando J. J., Tyndall G. S., Wallington T. J., Chem. Rev., 2003, 103, 4657CrossRefGoogle Scholar
  4. [4]
    Zhang P., Wang W. L., Zhang T. L., Chen L., Du Y. M., Li C. Y., Lu J., J. Phys. Chem. A, 2012, 116, 4610CrossRefGoogle Scholar
  5. [5]
    Hou H., Wang B. S., J. Phys. Chem. A, 2005, 109, 451CrossRefGoogle Scholar
  6. [6]
    Hou H., Li J. C., Song X. L., Wang B. S., J. Phys. Chem. A, 2005, 109, 11206CrossRefGoogle Scholar
  7. [7]
    Tang Y., Zhang W., J. Fluorine Chem., 2015, 180, 110CrossRefGoogle Scholar
  8. [8]
    Bedjanian Y., Riffault V., Bras G. L., Poulet G., J. Phys. Chem. A, 2001, 105, 573CrossRefGoogle Scholar
  9. [9]
    Wang R., Li Y. L., Feng X. K., Song L., Zhang T. L., Wang Z. Q., Chem. J. Chinese Universities, 2017, 38(3), 429Google Scholar
  10. [10]
    Butkovskaya N., Kukui A., Bras G. L., J. Phys. Chem. A, 2010, 114, 956CrossRefGoogle Scholar
  11. [11]
    Stewart V., Canosa-Mas C. E., Christian P., Phys. Chem. Chem. Phys., 2006, 8, 3749CrossRefGoogle Scholar
  12. [12]
    Teresa R. M., Percival C. J., McGillen M. R., Hamerb P. D., Shallcross D. E., Phys. Chem. Chem. Phys., 2007, 9, 4338CrossRefGoogle Scholar
  13. [13]
    Drougas E., Kosmas A. M., J. Phys. Chem. A, 2007, 111, 3402CrossRefGoogle Scholar
  14. [14]
    Finlayson-Pitts B. J., Pitts J. N., Science, 1997, 276, 1045CrossRefGoogle Scholar
  15. [15]
    Ziemann P. J., Roger A., Chem. Soc. Rev., 2012, 41, 6582CrossRefGoogle Scholar
  16. [16]
    Zhao Y., Wingen L. M., Perraud V., Phys. Chem. Chem. Phys., 2015, 17, 12500CrossRefGoogle Scholar
  17. [17]
    Hasson A. S., Tyndall G. S., Orlando J. J., J. Phys. Chem. A, 2004, 108, 5979CrossRefGoogle Scholar
  18. [18]
    Archibald A. T., Petit A. S., Percival C. J., Sci. Letts., 2009, 10, 102Google Scholar
  19. [19]
    Bian H., Zhang S. G., Zhang H. M., Int. J. Quantum Chem., 2015, 115 1181CrossRefGoogle Scholar
  20. [20]
    Yan C., Kocevska S., Krasnoperov L. N., J. Phys. Chem. A, 2016, 120, 6111CrossRefGoogle Scholar
  21. [21]
    Nguyen T. L., McCarthy M. C., Stanton J. F., J. Phys. Chem. A, 2015, 119, 7197CrossRefGoogle Scholar
  22. [22]
    Müller J. F., Liu Z., Nguyen V. S., Stavrakou, T., Harvey, J. N., Pee-ters J., Nat. Commun., 2016, 7, 13213CrossRefGoogle Scholar
  23. [23]
    Faragó E. P., Schoemaecker C., Viskolcz B., Fittschen C., Chem. Phys. Lett., 2015, 619, 196CrossRefGoogle Scholar
  24. [24]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., Gaussian 09, Gaussian Inc., Wallingford CT, 2009Google Scholar
  25. [25]
    Curtiss L. A., Raghavachari K., Redfern P. C., Pople J. A., J. Chem. Phys., 1997, 106, 1063CrossRefGoogle Scholar
  26. [26]
    Petersson G. A., Bennett A., Tensfeldt T. G., Al-Laham M. A., Shir-ley W. A., Mantzaris J., J. Phys. Chem., 1988, 89, 2193CrossRefGoogle Scholar
  27. [27]
    Montgomery J. A., Frisch M. J., Ochterski J. W., Petersson G. A., J. Chem. Phys., 2000, 112, 6532CrossRefGoogle Scholar
  28. [28]
    Curtiss L. A., Redfern P. C., Raghavachari K., J. Chem. Phys., 2007, 126, 084108CrossRefGoogle Scholar
  29. [29]
    Curtiss L. A., Redfern P. C., Aghavachari K. R., J. Chem. Phys., 2007, 127, 124105CrossRefGoogle Scholar
  30. [30]
    The National Institute of Standards and Technology, NIST Chemistry Webbook, Scholar
  31. [31]
    Ruscic B., Pinzon R. E., Morton M. L., J. Phys. Chem. A, 2006, 110, 6592CrossRefGoogle Scholar
  32. [32]
    Nakajima M., Endo Y., J. Chem. Phys., 2013, 139, 101103CrossRefGoogle Scholar
  33. [33]
    Miliordos E., Xantheas S. S., Angew. Chem. Int. Ed., 2015, 54, 1CrossRefGoogle Scholar
  34. [34]
    Koller J., Hodošcek M., Plesnicar B., J. Am. Chem. Soc., 1990, 112, 2124CrossRefGoogle Scholar
  35. [35]
    Luo Y. R., J. Chem. Educ., 1981, 58, 26CrossRefGoogle Scholar
  36. [36]
    Engdahl A., Nelander B., Science, 2002, 295, 482CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yanli Liu
    • 1
  • Long Chen
    • 1
  • Dongping Chen
    • 1
  • Weina Wang
    • 1
  • Fengyi Liu
    • 1
  • Wenliang Wang
    • 1
    Email author
  1. 1.Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi’anP. R. China

Personalised recommendations