Chemical Research in Chinese Universities

, Volume 33, Issue 2, pp 231–238 | Cite as

Synthesis, post-modification and catalytic properties of metal-organic framework NH2-MIL-53(Al)

  • Lili Liu
  • Xishi Tai
  • Xiaojing Zhou
  • Lijuan Liu


A postsynthetic modification method was used to prepare salicylaldehyde functionalized metal-organic frameworks through the nucleophilic addition of salicylaldehyde with the amine group present in the frameworks of NH2-MIL-53(Al). Hydroxyl groups were successfully grafted onto NH2-MIL-53(Al), and imine groups were formed. Importantly, these hydroxyl and imine groups of the resulting NH2-MIL-53(Al)-SA can be used as the anchoring group to stabilise Au3+ ions and Au0 nanoparticles(NPs). By doing this, Au3+ ions and Au0 NPs were successfully encapsulated in the cages of NH2-MIL-53(Al) by a simple impregnation method. The resulting gold functionalized NH2-MIL-53(Al) showed good catalytic activities in the one-pot synthesis of structurally divergent propargylamines by three-component coupling reactions of aldehydes, amines and alkynes. Various aromatic/aliphatic aldehydes, aromatic alkynes, and piperidine were able to undergo three-component coupling on NH2-MIL-53(Al)-Au. In addition, the catalyst NH2-MIL-53(Al)-Au was recovered easily by centrifugation and reused up to four times. Thus, it can be used for the environmentally friendly synthesis of propargylamines.


Metal-organic framework Postmodification NH2-MIL-53(Al) Three-component coupling Propargylamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012, 112, 673CrossRefGoogle Scholar
  2. [2]
    Lu T., Zhang L. C., Sun M. X., Deng D. Y., Su Y. Y., Lv Y., Anal. Chem., 2016, 88, 3413CrossRefGoogle Scholar
  3. [3]
    Eddaoudi M., Kim, J., Rosi N., Vodak D., Wachter J., O’Keeffe M., Yaghi O. M., Science, 2002, 295, 469CrossRefGoogle Scholar
  4. [4]
    Yaghi O. M., O’Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., Kim J., Nature, 2003, 423, 705CrossRefGoogle Scholar
  5. [5]
    Hamon L., Serre C., Devic T., Loiseau T., Millange F., Férey G., Weireld G. D., J. Am. Chem. Soc., 2009, 131, 8775CrossRefGoogle Scholar
  6. [6]
    Li J. R., Sculley J., Zhou H. C., Chem. Rev., 2012, 112, 869CrossRefGoogle Scholar
  7. [7]
    Harbuzaru B. V., Corma A., Rey F., Atienzar P., Jorda J. L., García H., Ananias D., Carlos L. D., Rocha J., Angew. Chem. Int. Ed., 2008, 47, 1080CrossRefGoogle Scholar
  8. [8]
    Lu Y., Yan B., Liu J. L., Chem. Commun., 2014, 50, 9969CrossRefGoogle Scholar
  9. [9]
    Wan X. Y., Wu L. Q., Zhang L. C., Song H. J., Lv Y., Sens. Actuators B, 2015, 220, 614CrossRefGoogle Scholar
  10. [10]
    Taylor-Pashow K. M. L., Della R. J., Xie Z. G., Tran S., Lin W. B., J. Am. Chem. Soc., 2009, 131(40), 14261CrossRefGoogle Scholar
  11. [11]
    He C. B., Lu K. D., Liu D. M., Lin W. B., J. Am. Chem. Soc., 2014, 136, 5181CrossRefGoogle Scholar
  12. [12]
    Liu J., Zhang X. B., Yang J., Wang L., Appl. Organometal. Chem., 2014, 28, 198CrossRefGoogle Scholar
  13. [13]
    Liu L. L., Zhang X., Gao J. S., Xu C. M., Green Chem., 2012, 14, 1710CrossRefGoogle Scholar
  14. [14]
    Liu L. L., Zhang X., Rang S. M., Yang Y., Dai X. P., Gao J. S., Xu C. M., He J., RSC Adv., 2014, 4, 13093CrossRefGoogle Scholar
  15. [15]
    Banerjee M., Das S., Yoon M., Choi H. J., Hyun M. H., Park S. M., Seo G., Kim K., J. Am. Chem. Soc., 2009, 131, 7524CrossRefGoogle Scholar
  16. [16]
    Cheng X. Q., Liu M., Zhang A. F., Hu S., Song C. S., Zhang G. L., Guo X. W., Nanoscale, 2015, 7, 9738CrossRefGoogle Scholar
  17. [17]
    Garibay S. J., Wang Z. Q., Tanabe K. K., Cohen S. M., Inorg. Chem., 2009, 48, 7341CrossRefGoogle Scholar
  18. [18]
    Dugan E., Wang Z. Q., Okamura M., Medina A., Cohen S. M., Chem. Commun., 2008, 3366Google Scholar
  19. [19]
    Wang Z. Q., Cohen S. M., J. Am. Chem. Soc., 2007, 129, 12368CrossRefGoogle Scholar
  20. [20]
    Tanabe K. K., Wang Z. Q., Cohen S. M., J. Am. Chem. Soc., 2008, 130, 8508CrossRefGoogle Scholar
  21. [21]
    Wu Y. Z., Xu G. H., Liu W., Yang J., Wei F. D., Li L., Zhang W., Hu Q., Micropor. Mesopor. Mat., 2015, 210, 110CrossRefGoogle Scholar
  22. [22]
    Wittmann T., Siegel R., Reimer N., Milius W., Stock N., Senker J., Chem. Eur. J., 2015, 21(1), 314CrossRefGoogle Scholar
  23. [23]
    Xi F. G., Liu H., Yang N. N., Gao E. Q., Inorg. Chem., 2016, 55(10), 4701CrossRefGoogle Scholar
  24. [24]
    Zhang X., Zhang J. M., Hu Q., Cui Y. J., Yang Y., Qian G. D., Appl. Surf. Sci., 2015, 355, 814CrossRefGoogle Scholar
  25. [25]
    Li B. Y., Ma D. X., Zhang Y. L., Li G. H., Shi Z., Feng S. H., Zawo-rotko M. J., Ma S. Q., Chem. Mater., 2016, 28(13), 4781CrossRefGoogle Scholar
  26. [26]
    Huffman M. A., Yasuda N., De Camp A. E., Grabowski E. J. J., J. Org. Chem., 1995, 60, 1590CrossRefGoogle Scholar
  27. [27]
    Konishi M., Ohkuma H., Tsuno T., Oki T., J. Am. Chem. Soc., 1990, 112, 3715CrossRefGoogle Scholar
  28. [28]
    Hu A., Yee G. T., Lin W., J. Am. Chem. Soc., 2005, 125, 12486CrossRefGoogle Scholar
  29. [29]
    Gajengi A. L., Sasaki T., Bhanage B. M., Catal. Commun., 2015, 72, 174CrossRefGoogle Scholar
  30. [30]
    Tai X. S., Liu L. L., Yin J., J. Inorg. Organomet. Polym., 2014, 24(6), 1014CrossRefGoogle Scholar
  31. [31]
    Borah B. J., Borah S. J., Saikia K., Dutta D. K., Catal. Sci. Technol., 2014, 4(11), 4001CrossRefGoogle Scholar
  32. [32]
    Nasrollahzadeh M., Sajadi S. M., RSC Adv., 2015, 5(57), 46240CrossRefGoogle Scholar
  33. [33]
    Zhang X., Corma A., Angew. Chem. Int. Ed., 2008, 47, 4358CrossRefGoogle Scholar
  34. [34]
    Berrichi A., Bachir R., Benabdallah M., Choukchou-Braham N., Tetrahedron Lett., 2015, 56, 1302CrossRefGoogle Scholar
  35. [35]
    Abahmane L., Koehler J. M., Gross G. A., Chem. Eur. J., 2011, 17, 3005CrossRefGoogle Scholar
  36. [36]
    Liu L. L., Tai X. S., Liu M. F., Li Y. F., Feng Y. M., Sun X. R., CIESC Journal, 2015, 66(5), 1738Google Scholar
  37. [37]
    Villaverde G., Corma A., Iglesias M., Sánchez F., ACS Catal., 2012, 2(3), 399CrossRefGoogle Scholar
  38. [38]
    Lo V. K. Y., Liu Y., Wong M. K., Che C. M., Org. Lett., 2006, 8, 1529CrossRefGoogle Scholar
  39. [39]
    Chang Y. C., Kuo C. J., Li C. S., Liu C. H., J. Organomet. Chem., 2006, 691, 4982CrossRefGoogle Scholar
  40. [40]
    Wei C., Li Z., Li C. J., Org. Lett., 2003, 5, 4473CrossRefGoogle Scholar
  41. [41]
    Palchak Z. L., Lussier D. J., Pierce C. J., Larsen C. H., Green Chem., 2015, 17(3), 1802CrossRefGoogle Scholar
  42. [42]
    Hua P., Lei W., Chin. J. Chem., 2005, 23(8), 1076CrossRefGoogle Scholar
  43. [43]
    Tai X. S., Liu L. L., Open Materials Science Journal, 2014, 9(1), 1CrossRefGoogle Scholar
  44. [44]
    Gonzalez-Bejar M., Peters K., Hallett-Tapley G. L., Grenier M., Scaiano J. C., Chem. Commun., 2013, 49(17), 1732CrossRefGoogle Scholar
  45. [45]
    Liu L. L., Zhang X., Gao J. S., Xu C. M., Chin. J. Catal., 2012, 33(5), 833Google Scholar
  46. [46]
    Ishida T., Haruta M., Angew. Chem. Int. Ed., 2007, 46, 7154CrossRefGoogle Scholar
  47. [47]
    Zhang X., Xamena F. X. L., Corma A., J. Catal., 2009, 265, 155CrossRefGoogle Scholar
  48. [48]
    Gascon J., Aktay U., Hernandez-Alonso M. D., van Klink G. P. M., Kapteijn F., J. Catal., 2009, 261(1), 75CrossRefGoogle Scholar
  49. [49]
    Stavitski E., Pidko E. A., Couck S., Remy T., Hensen E. J. M., Weckhuysen B. M., Langmuir, 2011, 27, 3970CrossRefGoogle Scholar
  50. [50]
    Liu L. L., Tai X. S., Yu G. L., Guo H. M., Meng Q. G., Chem. Res. Chinese Universities, 2016, 32(3), 443CrossRefGoogle Scholar
  51. [51]
    Zhang L., Hu Y. H., J. Phys. Chem. C, 2010, 114, 2566CrossRefGoogle Scholar
  52. [52]
    Chang L. M., Li J. R., Duan X. Y., Liu W., Electrochimica Acta, 2015, 176, 956CrossRefGoogle Scholar
  53. [53]
    Zhang W., Wu Z. Y., Jing H. L., Yu S. H., J. Am. Chem. Soc., 2014, 136, 14385CrossRefGoogle Scholar
  54. [54]
    Liu R. L., Ji W. J., He T., Zhang Z. Q., Zhang J., Dang F. Q., Carbon, 2014, 76, 84CrossRefGoogle Scholar
  55. [55]
    Cheng X. Q., Zhang A. F., Hou K. K., Liu M., Wang Y. X., Song C. S., Zhang G. L., Guo X. W., Dalton Trans., 2013, 42, 13698CrossRefGoogle Scholar
  56. [56]
    Chen X. Y., Vinh-Thang H., Rodrigue D., Kaliaguine S., Ind. Eng. Chem. Res., 2012, 51, 6895CrossRefGoogle Scholar
  57. [57]
    Abedini R., Omidkhah M., Dorosti F., RSC Adv., 2014, 4, 36522CrossRefGoogle Scholar
  58. [58]
    Bromberg L., Su X., Hatton T. A., ACS Appl. Mater. Interfaces, 2013, 5, 5468CrossRefGoogle Scholar
  59. [59]
    Feijani E. A., Tavasoli A., Mahdavi H., Ind. Eng. Chem. Res., 2015, 54, 12124CrossRefGoogle Scholar
  60. [60]
    Liang H., Liu L., Yang H. X., Wei J. J., Yang Z. J., Yang Y. Z., Cryst. Eng. Comm., 2011, 13, 2445CrossRefGoogle Scholar
  61. [61]
    Zhang X., Shi H., Xu B.Q., Catal. Today, 2007, 122(3/4), 330CrossRefGoogle Scholar
  62. [62]
    Hutchings G. J., Hall M. S., Carley A. F., Landon P., Solsona B. E., Kiely C. J., Herzing A., Makkee M., Moulijn J. A., Overweg A., Fierro-Gonzalez J. C., Gates B. C., J. Catal., 2006, 242(1), 71CrossRefGoogle Scholar
  63. [63]
    Zhang X., Shi H., Xu B. Q., Angew. Chem. Int. Ed., 2005, 44, 7132CrossRefGoogle Scholar
  64. [64]
    Casaletto M. P., Longo A., Martorana A., Prestianni A., Venezia A. M., Surf. Interface Anal., 2006, 38, 215CrossRefGoogle Scholar
  65. [65]
    Zhang X., Corma A., Chem. Commun., 2007, 38(29), 3080CrossRefGoogle Scholar
  66. [66]
    Liu L. L., Tai X. S., Zhang N. N., Meng Q. G., Xin C. L., Reac. Kinet. Mech. Cat., 2016, 119, 335CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2017

Authors and Affiliations

  1. 1.School of Chemistry & Chemical Engineering and Environmental EngineeringWeifang UniversityWeifangP. R. China

Personalised recommendations