Chemical Research in Chinese Universities

, Volume 32, Issue 5, pp 818–826 | Cite as

Free rotor model or rigid rotor model for CH3F-Ne complex and comparison with other CH3F-rare gas systems

  • Yongtao Ma
  • Yuanyuan Zhao
  • Dan Hou
  • Hui Li


The assignment of the rovibrational spectra of molecule-Ne complexes is always a challenge to study van der Waals systems, since they usually exhibit behavior intermediate between free rotor and rigid rotor. In this paper, the microwave and infrared spectra of CH3F-Ne, a model system for symmetric-top-atom dimer, were firstly predicted and analyzed based on the four-dimensional ab initio intermolecular potential energy surfaces(PESs), which explicitly incorporate the v 3(C—F) stretch normal model coordinate of the CH3F monomer. Analytic three-dimensional PESs were obtained by least-squares fitting vibrationally averaged interaction energies for v 3(CH3F)=0 and 1 to the Morse/long-range(MLR) potential function for symmetry top impurity with atom model. These PESs fitting to 2340 points have root-mean-square(RMS) deviations of 0.07 cm–1, and require only 167 parameters. Based on the analytical vibrationally averaged PESs, the rovibrational energy levels were calculated by employing Lanczos algorithm, with combined radial discrete variable representation and parity-adapted angular finite basis representation. Based on the wavefunction analysis and comparison of CH3F-Ne with CH3F-He and CH3F-Ar complexes, the bound states were assigned. Spectral parameters for CH3F-Rg(Rg: rare gas, Rg=He, Ne, Ar) complexes were fitted and discussed. Temperature dependent transition intensities for CH3F-Ne were also reported and analyzed. The complete microwave and infrared spectra information for CH3F-Ne made it possible to provide important guidance for future experimental spectroscopic assignments.


Morse/long-range model Rovibrational spectrum Symmetry-top molecule CH3F-Ne 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2016_6109_MOESM1_ESM.pdf (1.9 mb)
Expansion coefficients for CH3F(v 3=0)-Ne potential energy surface


  1. [1]
    Stone A. J., The Theory of Intermolecular Forces, Oxford University Press, Oxford, 1996Google Scholar
  2. [2]
    Blaney B. L., Ewing G. E., Ann. Rev. Phys. Chem., 1976, 27, 553CrossRefGoogle Scholar
  3. [3]
    Misquitta A. J., Bukowski R., Szalewicz K., J. Chem. Phys., 2000, 112, 5308CrossRefGoogle Scholar
  4. [4]
    Doyle R. J., Hirst D. M., Hutson J. M., J. Chem. Phys., 2006, 125, 184312CrossRefGoogle Scholar
  5. [5]
    Schuder M. D., Nelson D. D., Nesbitt D. J., J. Chem. Phys., 1991, 94, 5796CrossRefGoogle Scholar
  6. [6]
    Heijmen T. G. A., Moszynski R., Wormer P. E. S., van der Avoird A., J. Chem. Phys., 1997, 107, 9921CrossRefGoogle Scholar
  7. [7]
    Murdachaew G., Szalewicz K., Jiang H., Bacic Z., J. Chem. Phys., 2004, 121, 11839CrossRefGoogle Scholar
  8. [8]
    Moszynski R., de Weerd F., Groenenboom G. C., van der Avoird A., Chem. Phys. Lett., 1996, 263, 107CrossRefGoogle Scholar
  9. [9]
    Korona R. M. T., Wormer P. E. S., van der Avoird A., J. Phys. Chem. A, 1997, 101, 4690CrossRefGoogle Scholar
  10. [10]
    Wang L., Xie D. Q., Le Roy R. J., Roy P. N., J. Chem. Phys., 2012, 137, 104311CrossRefGoogle Scholar
  11. [11]
    Cui Y., Ran H., Xie D., J. Chem. Phys., 2009, 130, 224311CrossRefGoogle Scholar
  12. [12]
    Lei J., Zhou Y., Xie D., J. Chem. Phys., 2012, 136, 084310CrossRefGoogle Scholar
  13. [13]
    Ma Y. T., Zeng T., Li H., J. Chem. Phys., 2014, 140, 214309CrossRefGoogle Scholar
  14. [14]
    Ma Y. T., Li H., Science China Chemistry, 2015, 12, 1345Google Scholar
  15. [15]
    Hoogeveen R. W. M., van der Meer G. J., Hermans L. J. F., Chapovsky P. L., J. Chem. Phys., 1989, 90, 6143CrossRefGoogle Scholar
  16. [16]
    Jones L. H., Swanson B. I., J. Chem. Phys., 1982, 76, 1634CrossRefGoogle Scholar
  17. [17]
    Apkarian V. A., Weitz E., J. Chem. Phys., 1982, 76, 5796CrossRefGoogle Scholar
  18. [18]
    Lakhlifi A., Girardet C., J. Chem. Phys., 1989, 90, 1345CrossRefGoogle Scholar
  19. [19]
    van der Meer G. J., Hoogeveen R. W. M., Hermans L. J. F., Chapovsky P. L., Phys. Rev. A, 1989, 39, 5237CrossRefGoogle Scholar
  20. [20]
    Levandier D. J., Mengel M., Pursel R., McCombie J., Scoles G., Z. Phys. D: Atoms, Molecules and Clusters, 1988, 10, 337CrossRefGoogle Scholar
  21. [21]
    Celii F. G., Janda K. C., {iyZ. Phys. D: Atom., Molecules and Clusters,} 1988, 10, 347CrossRefGoogle Scholar
  22. [22]
    Abouaf-Marguin L., Gauthier-Roy B., Dupre J., Meyer C., J. Mol. Spectrosc., 1985, 110, 347CrossRefGoogle Scholar
  23. [23]
    Raghavachari K., Trucks J. A. P. G. W., Head-Gordon M., Chem. Phys. Lett., 1989, 157, 479CrossRefGoogle Scholar
  24. [24]
    Woon D. E., Dunning T. H., J. Chem. Phys., 1993, 98, 1358CrossRefGoogle Scholar
  25. [25]
    Tao F. M., Pan Y. K., Chem. Phys. Lett., 1992, 194, 162CrossRefGoogle Scholar
  26. [26]
    Tao F. M., Pan Y. K., J. Chem. Phys., 1992, 97, 4989CrossRefGoogle Scholar
  27. [27]
    Tao F. M., J. Chem. Phys., 1993, 98, 3049CrossRefGoogle Scholar
  28. [28]
    Boys S. F., Bernardi F., Mol. Phys., 1970, 19, 553CrossRefGoogle Scholar
  29. [29]
    Werner H. J., Knowles P. J., Amos R. D., Berning A., Cooper D. L., Deegan M. J. O., Dobbyn A. J., Eckert F., Elbert S. T., Hampel C., Lindh R., Lloyd A. W., Meyer W., Nicklass A., Peterson K., Pitzer R., Stone A. J., Taylor P. R., Mura M. E., Pulay P., Schutz M., Stoll H., Thoorsteinsso T., MOLPRO., Technologie-Transfer-Initiative GmbH an der Universität Stuttgart, Stuttgart, 2012Google Scholar
  30. [30]
    Le Roy R. J., Henderson R. D. E., Mol. Phys., 2007, 105, 663CrossRefGoogle Scholar
  31. [31]
    van Bladel J. W. I., van der Avoird A., Wormer P. E. S., J. Chem. Phys., 1991, 94, 501CrossRefGoogle Scholar
  32. [32]
    Zeng T., Li H., Le Roy R. J., Roy P. N., J. Chem. Phys., 2011, 135, 094304CrossRefGoogle Scholar
  33. [33]
    Zare R. N., Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics., Wiley, New York, 1988Google Scholar
  34. [34]
    Hutson J. M., J. Chem. Phys. 1990, 92, 157CrossRefGoogle Scholar
  35. [35]
    Lanczos C., Stand J. R. N. B., J. Chem. Phys., 1950, 45, 255Google Scholar
  36. [36]
    Koppel H., Cederbaum L., Domcke W., J. Chem. Phys., 1982, 77, 2014CrossRefGoogle Scholar
  37. [37]
    Nauts A., Wyatt R. E., Phys. Rev. Lett., 1983, 51, 2238CrossRefGoogle Scholar
  38. [38]
    Colbert D. T., Miller W. H., J. Chem. Phys., 1992, 96, 1982CrossRefGoogle Scholar
  39. [39]
    Papousek D., Hsu Y. C., Chen H. S., Pracna P., Klee S., Winnewisser M., Demaison J., J. Mol. Spectrosc, 1993, 159, 33CrossRefGoogle Scholar
  40. [40]
    Wang X. G., Carrington T. Jr., J. Chem. Phys., 2011, 134, 044313CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2016

Authors and Affiliations

  1. 1.Institute of Theoretical ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations