Chemical Research in Chinese Universities

, Volume 32, Issue 6, pp 1028–1033 | Cite as

Studies on optical properties of Si220 nanoclusters via time-dependent density functional theory calculations

  • Wenhua Yang
  • Wencai Lü
  • Xuyan Xue
  • Qingjun Zang
  • Caizhuang Wang
Article

Abstract

The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e., bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functional theory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorption spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region appears for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs.

Keywords

Si220 nanocluster Optical property Time-dependent density functional theory(TD-DFT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kim S. K., Cho C. H., Kim B. H., Park S. J., Lee J. W., Appl. Phys. Lett., 2009, 95, 143120CrossRefGoogle Scholar
  2. [2]
    Fujio K., Fujii M., Sumida K., Hayashi S., Fujisawa M., Ohta H., Appl. Phys. Lett., 2008, 93, 021920CrossRefGoogle Scholar
  3. [3]
    Fujii M., Mimura A., Hayashi S., Yamamoto K., Appl. Phys. Lett., 1999, 75, 184CrossRefGoogle Scholar
  4. [4]
    He Y., Kang Z. H., Li Q. S., Tsang C. H. A., Fan C. H., Lee S. T., Angew. Chem. Int. Ed., 2008, 48, 128CrossRefGoogle Scholar
  5. [5]
    Yong K. T., Ding H., Roy L., Law W. C., Bergey E. J., Maitra A., Prasad P. N., ACS Nano, 2009, 3, 502CrossRefGoogle Scholar
  6. [6]
    Huang S., Banerjee S., Tung R. T., Oda S., J. Appl. Phys., 2003, 93, 576CrossRefGoogle Scholar
  7. [7]
    Hirscheman K. D., Tsybeskov L., Duttagupta S. P., Fauchet P. M., Nature, 1996, 384, 338CrossRefGoogle Scholar
  8. [8]
    Wang M. H., Li D. S., Yuan A., Yang D. R., Que D. L., Appl. Phys. Lett., 2007, 90, 131903CrossRefGoogle Scholar
  9. [9]
    He Y., Zhong Y. L., Peng F., Wei X. P., Su Y. Y., Lu Y. M., Su S., Qu W., Liao L. S., Lee S. T., J. Am. Chem. Soc., 2011, 133, 14192CrossRefGoogle Scholar
  10. [10]
    Erogbogbo F., Yong K. T., Roy I., Hu R., Law W. G., Zhao W., Ding H., Wu P., Kumar R., Swihart M. T., Prasad P. N., ACS Nano, 2011, 5, 413CrossRefGoogle Scholar
  11. [11]
    Baldwin R. K., Pettigrew K. A., Garno J. C., Power P. P., Liu G. Y., Kauzlarich S. M., J. Am. Chem. Soc., 2002, 124, 1150CrossRefGoogle Scholar
  12. [12]
    Wilcoxon J., Samara G., Provencio P., Phys. Rev. B: Condens. Mat-ter., 1999, 60, 2704CrossRefGoogle Scholar
  13. [13]
    Brongersma M. L., Kik P. G., Polman A., Appl. Phys. Lett., 2000, 76, 351CrossRefGoogle Scholar
  14. [14]
    Antonova I. V., Gulyaev M., Savir E., Jedrzejewski J., Balberg I., Phys. Rev. B: Condens. Matter., 2008, 77, 125318CrossRefGoogle Scholar
  15. [15]
    Sublemontier O., Lacour F., Leconte Y., Herlin-boime N., Reynaud C., J. Alloys. Compd., 2009, 483, 499CrossRefGoogle Scholar
  16. [16]
    Puzder A., Williamson A. J., Reboredo F. A., Galli G., Phys. Rev. Lett., 2003, 91, 157405CrossRefGoogle Scholar
  17. [17]
    Lu H. D., Zhao Y. J., Yang X. B., Xu H., Phys. Rev. B: Condens. Matter., 2012, 86, 085440CrossRefGoogle Scholar
  18. [18]
    Williamson A. J., Grossman J. C., Hood R. Q., Puzder A., Galli G., Phys. Rev. Lett., 2002, 89, 196803CrossRefGoogle Scholar
  19. [19]
    Li Z. F., Ruckenstein E., Nano Lett., 2004, 4, 1463CrossRefGoogle Scholar
  20. [20]
    Rosso-Vasic M., Spruijt E., van Lagen B., de Cola L., Zuilhof H., Small, 2008, 4, 1835CrossRefGoogle Scholar
  21. [21]
    Shiohara A., Hanada S., Prabakar S., Dujioka K., Lim T. H., Yama-moto K., Northcote P. T., Tilley R. D., J. Am. Chem. Soc., 2010, 132, 248CrossRefGoogle Scholar
  22. [22]
    Wolkin M. V., Jorne J., Fauchet P. M., Allan G., Delerue C., Phys. Rev. Lett., 1999, 82, 197CrossRefGoogle Scholar
  23. [23]
    Rechtsteiner G. A., Hampe O., Jarrold M. F., J. Phys. Chem. B, 2001, 105, 4188CrossRefGoogle Scholar
  24. [24]
    Zhou Z., Brus L., Friesner R., Nano Lett., 2003, 3, 163CrossRefGoogle Scholar
  25. [25]
    Qi W. H., Lee S. T., Chem. Phys. Lett., 2009, 483, 247CrossRefGoogle Scholar
  26. [26]
    Nishida M., Phys. Rev. B: Condens. Matter., 2004, 70, 113303CrossRefGoogle Scholar
  27. [27]
    Ma J., Wei S. H., Phys. Rev. B: Condens. Matter., 2013, 87, 115318CrossRefGoogle Scholar
  28. [28]
    Khoo K. H., Zayak A. T., Kwak H., Chelikowsky J. R., Phys. Rev. Let., 2010, 105, 115504CrossRefGoogle Scholar
  29. [29]
    Khoo K. H., Chelikowsky J. R., Phys Rev B: Condens. Matter., 2014, 89, 195309CrossRefGoogle Scholar
  30. [30]
    Pi X. D., Delerue C., Phys. Rev. Lett., 2013, 111, 177402CrossRefGoogle Scholar
  31. [31]
    Zhou S., Pi X. D., Ni Z. Y., Ding Y., Jiang Y. Y., Jin C. H., Delerue C., Yang D., Nozaki T., ACS Nano, 2015, 9, 378CrossRefGoogle Scholar
  32. [32]
    Rowe D. J., Jeong J. S., Mkhoyan K. A., Kortshagen U. R., Nano Lett., 2013, 13, 1317CrossRefGoogle Scholar
  33. [33]
    Yang W. H., Lu W. C., Wang C. Z., Ho K. M., J. Phys. Chem. C, 2016, 120, 1966CrossRefGoogle Scholar
  34. [34]
    Vanderbilt D., Phys. Rev. B: Condens. Matter., 1990, 41, 7892CrossRefGoogle Scholar
  35. [35]
    Milman V., Winkler B., White J. A., Pickard C. J., Payne M. C., Akhmatskaya E. V., Nobes R. H. Int. J. Quantum Chem., 2000, 77, 895CrossRefGoogle Scholar
  36. [36]
    Payne M. C., Teter M. P., Allan D. C., Arias T. A., Joannopoulos J. D., Rev. Mod. Phys., 1992, 64, 1045CrossRefGoogle Scholar
  37. [37]
    Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Let., 1996, 77, 3865CrossRefGoogle Scholar
  38. [38]
    Weissker H. C., Furthmuller J., Bechstedt F., Phys. Rev. B: Condens. Matter., 2004, 69, 115310CrossRefGoogle Scholar
  39. [39]
    Furukawa S., Miyasato T., Phys. Rev. B: Condens. Matter., 1988, 38, 57266CrossRefGoogle Scholar
  40. [40]
    Benedict L. X., Puzder A., Williamson A. J., Grossman J. C., Galli G., Klepeis J. E., Raty J. Y., Pankratov O., Phys. Rev. B: Condens. Matter., 2003, 68, 085310CrossRefGoogle Scholar
  41. [41]
    Ramos L. E., Paler J., Kresse G., Bechetedt F., Phys. Rev. B: Condens. Matter., 2008, 78, 195423CrossRefGoogle Scholar
  42. [42]
    Ni Z. Y., Pi X. D., Yang D. R., Phys. Rev. B: Condens. Matter., 2014, 89, 035312CrossRefGoogle Scholar
  43. [43]
    Vasiliev I., Ogut S., Chelikowsky J. R., Phys. Rev. Lett., 2001, 86, 1813CrossRefGoogle Scholar
  44. [44]
    Delley B., Steigmeier E. F., Phys. Rev. B: Condens. Matter., 1992, 47, 1397CrossRefGoogle Scholar
  45. [45]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision E.01, Gaussian Inc., Wallingford CT, 2009Google Scholar
  46. [46]
    Lu W. C., Wang C. Z., Zhao L. Z., Qin W., Ho K. M. Phys. Rev. B: Condens. Matter., 2015, 92, 035206CrossRefGoogle Scholar
  47. [47]
    Wilcoxon J. P., Samara G., Provencio P. N., Phys. Rev. B: Condens. Matter., 1999, 60, 2704CrossRefGoogle Scholar
  48. [48]
    Sze S. M., Physics of Semiconductor Devices, Chap. 2 and Refer-ences Thertin, Wiley Interscience, New York, 1969Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2016

Authors and Affiliations

  • Wenhua Yang
    • 1
    • 2
  • Wencai Lü
    • 1
    • 2
  • Xuyan Xue
    • 2
  • Qingjun Zang
    • 2
  • Caizhuang Wang
    • 3
  1. 1.Institute of Theoretical ChemistryJilin UniversityChangchunP. R. China
  2. 2.Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of PhysicsQingdao UniversityQingdaoP. R. China
  3. 3.Ames Laboratory-US DOE and Department of Physics and AstronomyIowa State UniversityAmesUSA

Personalised recommendations