Advertisement

Chemical Research in Chinese Universities

, Volume 32, Issue 1, pp 16–19 | Cite as

Microwave-assisted synthesis of CdTe quantum dots using 3-mercaptopropionic acid as both a reducing agent and a stabilizer

  • Yantao Huang
  • Yuwei Lan
  • Qilei Yi
  • Hualin Huang
  • Yilin Wang
  • Jianping Lu
Article

Abstract

In this paper, a facile synthetic approach to prepare CdTe quantum dots(QDs) with high luminescence via a one-pot microwave irradiation reaction route using 3-mercaptopropionic acid(MPA) as both a sodium tellurite reducer and a capping molecule was described, and the mechanism of the formation of CdTe QDs was elucidated. In this approach, CdTe QDs with six different emission wavelengths of 553, 567, 577, 595, 608 and 615 nm were obtained via changing the refluxing time and the quantum yields(QY) of these QDs were 40.6%, 55.3%, 63.6%, 43.4%, 37.4% and 29.7%, respectively. The characterization results of X-ray powder diffraction(XRD) and transmission electron microscopy(TEM) indicate that the obtained QDs have a pure cubic zinc blended structure with a spherical shape. No toxic gases were released during the preparation process, indicating that the method is relatively fast, cheap and environmentally friendly.

Keywords

Cadmium telluride Quantum dot Photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Shen C., Tong H., Gao W. C., Yuan S. L., Chen G. R., Yang Y. X., J. Alloy. Compd., 2015, 644, 205CrossRefGoogle Scholar
  2. [2]
    Ensafi A. A., Kazemifard N., Rezaei B., Biosens. Bioelectron., 2015, 71, 243CrossRefGoogle Scholar
  3. [3]
    Chang Y. L., Liu N., Liu H., Yang Y. M., Zhao Y. L., Li Y. P., Yuan H., Chem. Res. Chinese Universities, 2015, 31(4), 514CrossRefGoogle Scholar
  4. [4]
    Qian S. Y., Su A. M., Huang F. H., Li H. M., Wang Y. L., Bull. Korean Chem. Soc., 2014, 35, 1601CrossRefGoogle Scholar
  5. [5]
    Wang Y. L., Liu S. Y., Mo F. P., Pan H. Q., Chem. J. Chinese Universities, 2013, 34(1), 45Google Scholar
  6. [6]
    Liu X. M., Jiang Y., Guo W. M., Lan X. Z., Fu F. M., Huang W. Y., Li L. J., Chem. Eng. J., 2013, 230, 466CrossRefGoogle Scholar
  7. [7]
    Wang J. D., Zhai J. Z., Han S. M., Chem. Eng. J., 2013, 215/216, 23CrossRefGoogle Scholar
  8. [8]
    Xie X., Yu M. H., Zhang H. P., Wang Y. L., Chem. J. Chinese Universities, 2015, 36(4), 608Google Scholar
  9. [9]
    Menezes F. D., Galembeck A., Junior S. A., Ultrason. Sonochem., 2011, 18, 1008CrossRefGoogle Scholar
  10. [10]
    Durán G. M., Plata M. R., Zougagh M., Contento A. M., Ríos Á., J. Colloid Interface Sci., 2014, 428, 235CrossRefGoogle Scholar
  11. [11]
    Zhu Y. L., Li C. S., Xu Y., Wang D. F., J. Alloy. Compd., 2014, 608, 141CrossRefGoogle Scholar
  12. [12]
    Ni T., Nagesha D. K., Robles J., Materer N. K., Müssiq S., Kotov N. K., J. Am. Chem. Soc., 2002, 124, 3980CrossRefGoogle Scholar
  13. [13]
    He Y., Lu H. T., Sai L. M., Lai W. Y., Fan Q. L., Wang L. H., Huang W., J. Phys. Chem. B, 2006, 110, 13352CrossRefGoogle Scholar
  14. [14]
    Xuan T. T., Wang X. J., Zhu G., Li H. L., Pan L. K., Sun Z., J. Alloy. Compd., 2013, 558, 105CrossRefGoogle Scholar
  15. [15]
    He Y., Lu H. T., Sai L. M., Lai W. Y., Fan Q. L., Wang L. H., Huang W., J. Phys. Chem. B, 2006, 110, 13370CrossRefGoogle Scholar
  16. [16]
    Zane A., McCracken C., Knight D. A., Waldman W. J., Dutta P. K., J. Phys. Chem. C, 2014, 118, 22258CrossRefGoogle Scholar
  17. [17]
    Liu S. P., Fu J. J., Li M. J., Lin L., Li X. Q., Ge M. Q., Chinese Chem. Lett., 2014, 25, 933CrossRefGoogle Scholar
  18. [18]
    Mobedi N., Marandi M., Bidaki H. Z., J. Lumin., 2014, 156, 235CrossRefGoogle Scholar
  19. [19]
    Shi A. M., Sun J. H., Zeng Q. H., Shao C., Sun Z. C., Li H. B., Kong X. G., Zhao J. L., J. Lumin., 2011, 131, 1536CrossRefGoogle Scholar
  20. [20]
    Gan T. T., Zhang Y. J., Zhao N. J., Xiao X., Yin G. F., Yu S. H., Wang H. B., Duan J. B., Shi C. Y., Liu W. Q., Spectrochim. Acta A, 2012, 99, 62CrossRefGoogle Scholar
  21. [21]
    Zhang K., Guo J. K., Nie J. J., Du B. Y., Xu D. J., Sensor. Actuat. B, 2014, 190, 279CrossRefGoogle Scholar
  22. [22]
    Hodlur R. M., Rabinal M. K., Chem. Eng. J., 2014, 244, 82CrossRefGoogle Scholar
  23. [23]
    He Y., Sai L. M., Lu H. T., Hu M., Lai W. Y., Fan Q. L., Wang L. H., Huang W., Chem. Mater., 2007, 19, 359CrossRefGoogle Scholar
  24. [24]
    Kalasad M. N., Rabinal M. K., Mulimani B. G., Langmuir, 2009, 25, 12729CrossRefGoogle Scholar
  25. [25]
    Lu Z. S., Guo C. X., Yang H. B., Qiao Y., Guo J., Li C. M., J. Colloid Interface Sci., 2011, 353, 588CrossRefGoogle Scholar
  26. [26]
    Xie X., Wu X. Y., Liu T. K., Li H. M., Wang Y. L., Lu J. P., Micro. Nano Lett., 2014, 9, 478CrossRefGoogle Scholar
  27. [27]
    Xing B., Li W. W., Sun K., Mater. Lett., 2008, 62, 3178CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2015

Authors and Affiliations

  • Yantao Huang
    • 1
  • Yuwei Lan
    • 1
  • Qilei Yi
    • 1
  • Hualin Huang
    • 1
  • Yilin Wang
    • 1
  • Jianping Lu
    • 1
  1. 1.Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical EngineeringGuangxi UniversityNanningP. R. China

Personalised recommendations