Advertisement

Chemical Research in Chinese Universities

, Volume 31, Issue 4, pp 543–548 | Cite as

Solvent-free 1,3-dipolar cycloaddition of azomethine imines with terminal alkynes promoted by calcium fluoride under the ball milling condition

  • Xianglong Chen
  • Chunman Jia
  • Li Cao
  • Dela Zhang
  • Shuixiang Liu
  • Qi Zhang
Article

Abstract

A convenient and efficient procedure for the synthesis of N,N-bicyclic pyrazolidinone derivatives has been developed via the reaction of azomethine imines with terminal alkynes under the ball milling condition without solvent, which was promoted by calcium fluoride with a catalyst of copper(I) salt. The cyclization reactions exhibited moderate to high yields.

Keywords

Ball-milling 1,3-Dipolar cycloaddition Click chemistry Solvent-free reaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Eicher T., Hauptmann S., The Chemistry of Heterocycles, 2nd Ed., Wiley-VCH, Weinheim, 2003 CrossRefGoogle Scholar
  2. [2]
    Varvounis G., Fiamegos Y., Pilidis G., Adv. Heterocycl. Chem., 2001, 80, 73CrossRefGoogle Scholar
  3. [3]
    Elguero J.; Eds.: Katritzky A. R., Rees C. W., Scriven E. F. V., Pyrazoles: Comprehensive Heterocyclic Chemistry II, Vol. 3, Elsevier, Oxford, 1996,1Google Scholar
  4. [4]
    Radl S.; Eds.: Katritzky A. R., Rees C. W., Scriven E. F. V., Bicyclic Systems with Two Ring Junction Nitrogen Atom: Comprehensive Heterocyclic Chemistry II, Vol. 8, Elsevier, Oxford, 1996, 747Google Scholar
  5. [5]
    Konaklieva M. I., Plotlin B. J., Curr. Med. Chem. Anti-infect. Agents, 2003, 2, 287CrossRefGoogle Scholar
  6. [6]
    Hanessian S., McNaughton-Smith G., Lombart H. G., Lubell W. D., Tetrahedron, 1997, 53, 12789CrossRefGoogle Scholar
  7. [7]
    Marchand-Brynaert J., Ghosez L.; Eds.: Lukacs G., Ohno M., Recent Progress in the Chemical Synthesis of Antibiotics, Springer, Berlin, 1990 Google Scholar
  8. [8]
    Jungheim L. N., Sigmund S. K. J., Org. Chem., 1987, 52, 4007CrossRefGoogle Scholar
  9. [9]
    Ternansky R. J., Draheim S. E., Pike A. J., Counter F. T., Eudaly J. A., Kasher J. S., J. Med. Chem., 1993, 36, 3224CrossRefGoogle Scholar
  10. [10]
    Nakano H., Tsugawa N., Takahashi K., Okuyama Y., Fujita R., Tetrahedron, 2006, 62, 10879CrossRefGoogle Scholar
  11. [11]
    Sibi M. P., Soeta T., J. Am. Chem. Soc., 2007, 129, 4522CrossRefGoogle Scholar
  12. [12]
    Huisgen R.; Ed.: Padwa A., 1,3-Dipolar Cycloaddition Chemistry, Wiley, New York, 1984, 1Google Scholar
  13. [13]
    Jiang Y., Han Q., Shen R., Wang B., Chem. Res. Chinese Universities, 2014, 30(5), 755CrossRefGoogle Scholar
  14. [14]
    Padwa A., Pearson W. H., Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Wiley, New York, 2003 Google Scholar
  15. [15]
    Dorn H., Otto A., Chem. Ber., 1968, 101, 3287CrossRefGoogle Scholar
  16. [16]
    Dorn H., Otto A., Angew. Chem., 1968, 80, 196CrossRefGoogle Scholar
  17. [17]
    Shintani R., Fu G. C., J. Am. Chem. Soc., 2003, 125, 10778CrossRefGoogle Scholar
  18. [18]
    Suarez A., Downey C. W., Fu G. C., J. Am. Chem. Soc., 2005, 127, 11244CrossRefGoogle Scholar
  19. [19]
    Keller M., Sido A. S. S., Pale P., Chem. Eur. J., 2009, 15, 2810CrossRefGoogle Scholar
  20. [20]
    Yoshimura K., Oishi T., Yamaguchi K., Mizuno N., Chem. Eur. J., 2011, 17, 3827CrossRefGoogle Scholar
  21. [21]
    Arai T., Ogino Y., Sat T., Chem. Commun., 2013, 49, 7776CrossRefGoogle Scholar
  22. [22]
    Arai T., Ogin Y., Molecules, 2012, 17, 6170CrossRefGoogle Scholar
  23. [23]
    Shao C., Zhang Q., Cheng G., Cheng C., Wang X., Eur. J. Org. Chem., 2013, 28, 6443CrossRefGoogle Scholar
  24. [24]
    Imaizumi T., Yamashita Y., Kobayashi S., J. Am. Chem. Soc., 2012, 134, 20049CrossRefGoogle Scholar
  25. [25]
    McNaught A. D., Wilkinson A., IUPAC. In Compendium of Chemical Terminology, 2nd Ed.(theGold Book”), Blackwell Scientific Publications, Oxford, 1997[XML on-line corrected version: http://goldbook.iupac.org(2006) created by Nic M., Jira J., Kosat B., updates compiled by Jenkins A, ISBN 0-9678550-9-8. doi: 10.1351/goldbook, http://goldbook.iupac.org/MT07141.html]Google Scholar
  26. [26]
    Balaz P., Achimovicova M., Balaz M., Billi P., Cherkezova-Zheleva Z., Criado J. M., Delogu F., Dutkova E., Gaffet E., Gotor F. J., Kumar R., Mitov I., Rojac T., Senna M., Streletskii A., Wieczorek-Ciurowa K., Chem. Soc. Rev., 2013, 42, 7571CrossRefGoogle Scholar
  27. [27]
    Friscic T., Chem. Soc. Rev., 2012, 41, 3493CrossRefGoogle Scholar
  28. [28]
    James S. L., Adams C. J., Bolm C., Braga D., Collier P., Friscic F., Grepioni K. D. M., Harris G., Hyett W., Jones A., Krebs T., Mack J., Maini L., Orpen A. G., Parkin I. P., Shearouse W. C., Steed J. W., Waddell D. C., Chem. Soc. Rev., 2012, 41, 413CrossRefGoogle Scholar
  29. [29]
    Friscic T., Reid D. G., Halasz I., Stein R. S., Dinnebier R. E., Duer M., J. Angew. Chem. Int. Ed., 2010, 49, 712CrossRefGoogle Scholar
  30. [30]
    Bernhardt F., Trotzki R., Szuppa T., Stolle A., Ondruschka B., Beilstein, J. Org. Chem., 2010, 6, 7CrossRefGoogle Scholar
  31. [31]
    Galvez J., Galvez-Llompart M., Garcia D. R., Green Chem., 2010, 12, 1056CrossRefGoogle Scholar
  32. [32]
    Cravotto G., Garella D., Tagliapietra S., Stolle A., Schußler S., Leonhardt S. E. S., Ondruschka B., New J. Chem., 2012, 36, 1304CrossRefGoogle Scholar
  33. [33]
    Thorwirth R., Stolle A., Ondruschka B., Green Chem., 2010, 12, 985CrossRefGoogle Scholar
  34. [34]
    Fulmer D. A., Shearouse W. C., Medonza S. T., Mack J., Green Chem., 2009, 11, 1821CrossRefGoogle Scholar
  35. [35]
    Luque R., MacQuarie D., J. Org. Biomol. Chem., 2009, 7, 1627CrossRefGoogle Scholar
  36. [36]
    Jia C., Chen D., Zhang C., Zhang Q., Cao B., Zhao Z., Tetrahedron, 2013, 69, 7320CrossRefGoogle Scholar
  37. [37]
    Jorres M., Mersmann S., Raabe G., Bolm C., Green Chem., 2013, 15, 612CrossRefGoogle Scholar
  38. [38]
    Choudhary G., Peddinti R. K., Green Chem., 2011, 13, 276CrossRefGoogle Scholar
  39. [39]
    Waddell D. C., Clark T. D., Mack J., Tetrahedron Lett., 2012, 53, 4510CrossRefGoogle Scholar
  40. [40]
    Hernandez J. G., Juaristi E., Tetrahedron, 2011, 67, 6953CrossRefGoogle Scholar
  41. [41]
    Hernandez J. G., Juaristi E., J. Org. Chem., 2011, 76, 1464CrossRefGoogle Scholar
  42. [42]
    Banon-Caballero A., Guillena G., Najera C., Green Chem., 2010, 12, 1599CrossRefGoogle Scholar
  43. [43]
    Watanabe H., Senna M., Tetrahedron Lett., 2005, 46, 6815CrossRefGoogle Scholar
  44. [44]
    Zhang Z., Peng Z. W., Hao M. F., Gao J. G., Synlett, 2010, 2895Google Scholar
  45. [45]
    Thorwirth R., Stolle A., Ondruschka B., Wild A., Schubert U. S., Chem. Commun., 2011, 47, 4370CrossRefGoogle Scholar
  46. [46]
    Wada S., Suzuki H., Tetrahedron Lett., 2003, 44, 399CrossRefGoogle Scholar
  47. [47]
    Mohanram I., Meshram J., Shaikh A., Kandpal B., Synthetic Communications, 2013, 43, 3322CrossRefGoogle Scholar
  48. [48]
    Schmidt R., Thorwirth R., Szuppa T., Stolle A., Ondruschka B., Hopf H., Chem. Eur. J., 2011, 17, 8129CrossRefGoogle Scholar
  49. [49]
    Cook T. L., Walker J. A. Jr., Mack J., Green Chem., 2013, 15, 617CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2015

Authors and Affiliations

  1. 1.Hainan Provincial Key Lab of Fine ChemHainan UniversityHaikouP. R. China
  2. 2.Key Study Center of Ministry of Education for Tropical Resources UtilizationHainan UniversityHaikouP. R. China

Personalised recommendations