Advertisement

Chemical Research in Chinese Universities

, Volume 30, Issue 2, pp 211–215 | Cite as

Tumor cell detection device based on surface plasmon resonance imaging and image processing

  • Mengchao Yang
  • Xinyu JinEmail author
  • Maokai Yuan
  • Fan Liu
  • Yicong Lang
  • Zhongyu Wu
  • Liancheng Xiang
  • Chao Zhou
  • Bo Ouyang
  • Wei Jin
  • Ying MuEmail author
Article

Abstract

A laboratory-made tumor cell detection device was fabricated based on both surface plasmon resonance imaging(SPRi) and image processing. In this device, a gravity-induced flow injection chip(gFIC) was exploited to replace a pump. Also two charge coupled devices(CCDs) were used to detect HepG2 cells by SPRi and image processing, respectively. The results of two CCDs are associated. Protein A was used to modify the sensing surface. The inlet angle was carefully adjusted for the device to get an enhanced image. In the test, the contrast among cell solutions at different concentrations can be easily distinguished. The other CCD using image processing can tell false-positive in some degree. This detection is label-free, real time, and precise.

Keywords

Surface plasmon resonance Image processing Tumor detection Gravity induced 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Supplementary material, approximately 180 KB.

References

  1. [1]
    He R., Lin C., Su Y., Chiu K., Chang N., Wu H., Chen S., Opt. Express, 2010, 18, 3649CrossRefGoogle Scholar
  2. [2]
    Chang C., Lin S., Lee C., Chuang T., Hsueh P., Lai H., Lin C., Biosensors and Bioelectronics, 2012, 37, 68CrossRefGoogle Scholar
  3. [3]
    Kai E., Sawata S., Ikebukuro K., Iida T., Honda T., Karube I., Anal. Chem., 1999, 71(4), 796CrossRefGoogle Scholar
  4. [4]
    Chen H., Gal Y., Kim S., Choi H., Oh M., Lee J., Koh K., Sensors and Actuators B: Chemical, 2008, 133, 577CrossRefGoogle Scholar
  5. [5]
    Tang L. J., Casas M., Anal. Chem., 2013, 85(3), 1431CrossRefGoogle Scholar
  6. [6]
    Horii M., Shinohara H., Iribe Y., Suzuki M., Analyst, 2011, 136, 2706CrossRefGoogle Scholar
  7. [7]
    Yanase Y., Hiragun T., Kaneko S., Gould H. J., Greaves M. W., Biosensors and Bioelectronics, 2010, 26, 674CrossRefGoogle Scholar
  8. [8]
    Hiragun T., Yanase Y., Kose K., Kawaguchi T., Uchida K., Tanaka S., Hide M., Biosensors and Bioelectronics, 2012, 32, 202CrossRefGoogle Scholar
  9. [9]
    Natarajan S., Katsamba P. S., Miles A., Eckman J., Papalia G. A., Rich R. L., Gale B., Myszka D. G., Anal. Biochem., 2008, 373, 141CrossRefGoogle Scholar
  10. [10]
    Eddings M. A., Eckman J. W., Arana C. A., Papalia G. A., Connolly J. E., Gale B. K., Myszka D. G., Anal. Biochem., 2009, 385, 309CrossRefGoogle Scholar
  11. [11]
    Nelson B. P., Grimsrud T. E., Liles M. R., Goodman R. M., Corn R. M., Anal. Chem., 2000, 73, 1CrossRefGoogle Scholar
  12. [12]
    Jiang J., Fan D. N., Chen W., Xiong Z. H., Medical Information, 2009, 22(1), 8Google Scholar
  13. [13]
    You Y. R., Fan Y. L., Pang Q., Computer Engineering and Applications, 2005, (20), 206Google Scholar
  14. [14]
    Zhang Y., Jin W., Yang M. C., Zhang T. Q., Zhou C., Xie F., Song Q., Ren H., Jin Q. H., Mu Y., Chem. Res. Chinese Universities, 2012, 28(5), 792Google Scholar
  15. [15]
    Zhan S., Wang X., Luo Z., Zhou H., Chen H., Liu Y., Sensors and Actuators B: Chemical, 2011, 153, 427CrossRefGoogle Scholar
  16. [16]
    Johnston K. S., Booksh K. S., Chinowsky T. M., Yee S. S., Sensors and Actuators B: Chemical, 1999, 54, 80CrossRefGoogle Scholar
  17. [17]
    Chinowsky T. M., Yee S. S., Sensors and Actuators B: Chemical, 1998, 51, 321CrossRefGoogle Scholar
  18. [18]
    Schuck P., Zhao H., Methods in Molecular Biology, 2010, 627, 15CrossRefGoogle Scholar
  19. [19]
    Bishop J., Blair S., Biosensors and Bioelectronics, 2007, 22, 2192CrossRefGoogle Scholar
  20. [20]
    Henry M. R., Stevens P. W., Sun J., Kelso D. M., Anal. Biochem., 1999, 2, 204CrossRefGoogle Scholar
  21. [21]
    Hagan M. F., Chakraborty A. K., J. Chem. Phys., 2004, 10, 4958CrossRefGoogle Scholar
  22. [22]
    Tawa K., Knoll W., Nucleic Acids Res., 2004, 8, 2372CrossRefGoogle Scholar
  23. [23]
    Fiche J. B., Buhot A., Calemczuk R., Livache T., Biophys. J., 2007, 3, 935CrossRefGoogle Scholar
  24. [24]
    Georgiadis R., Peterlinz K. P., Peterson A. W., J. Am. Chem. Soc., 2000, 122(13), 3166CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2014

Authors and Affiliations

  • Mengchao Yang
    • 1
  • Xinyu Jin
    • 2
    Email author
  • Maokai Yuan
    • 1
  • Fan Liu
    • 2
  • Yicong Lang
    • 2
  • Zhongyu Wu
    • 1
  • Liancheng Xiang
    • 1
  • Chao Zhou
    • 1
  • Bo Ouyang
    • 2
  • Wei Jin
    • 1
  • Ying Mu
    • 1
    Email author
  1. 1.Research Center for Analytical Instrumentation, Institute of Cyber-systems and Control, State Key Laboratory of Industrial Control TechnologyZhejiang UniversityHangzhouP. R. China
  2. 2.Department of Information Science & Electronic EngineeringZhejiang UniversityHangzhouP. R. China

Personalised recommendations