Chemical Research in Chinese Universities

, Volume 30, Issue 2, pp 289–292 | Cite as

Enzymatic promiscuity: Escherichia coli BioH esterase-catalysed Aldol reaction and Knoevenagel reaction

  • Ling Jiang
  • Hongwei YuEmail author


Esterase BioH, which is obligatory for biotin synthesis in Escherichia coli, was found to exhibit a promiscuous ability to catalyse Aldol and Knoevenagel reactions with moderate to good yields. The reaction conditions including organic solvent, molar ratio of ketone to aldehyde, enzyme amount, and reaction time were investigated to evaluate the effect of different reaction conditions on yield. Target compounds were afforded in the best yield of 91.2% for Aldol reaction and 54.7% for Knoevenagel reaction. In addition, because the enzyme could be prepared with a low cost, this protocol could provide an economic route to conduct Aldol and Knoevenagel reactions, which expand the field of enzymatic promiscuity.


Escherichia coli BioH esterase Catalytic promiscuity Aldol reaction Knoevenagel reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Koeller K. M., Wong C. H., Nature, 2001, 409, 232CrossRefGoogle Scholar
  2. [2]
    Jiang X. J., Hu Y., Jiang L., Gong J. H., Huang H., Chem. Res. Chinese Universities, 2013, 29(2), 223CrossRefGoogle Scholar
  3. [3]
    Bornscheuer U. T., Kazlauskas R. J., Angew. Chem. Int. Ed., 2004, 43, 6032CrossRefGoogle Scholar
  4. [4]
    Svedendahl M., Hult K., Berglund P., J. Am. Chem. Soc., 2005, 127, 17988CrossRefGoogle Scholar
  5. [5]
    Wu W. B., Wang N., Xu J. M., Wu Q., Lin X. F., Chem. Commun., 2005, (18), 2348Google Scholar
  6. [6]
    Li K., He T., Li C., Feng X. W., Wang N., Yu X. Q., Green Chem., 2009, 11, 777CrossRefGoogle Scholar
  7. [7]
    Reetz M. T., Mondiere R., Carballeira J. D., Tetrahedron Lett., 2007, 48, 1679CrossRefGoogle Scholar
  8. [8]
    Tang R. C., Guan Z., He Y. H., Zhu W., J. Mol. Catal. B: Enzym., 2010, 63, 62CrossRefGoogle Scholar
  9. [9]
    Wurtz A., Bull. Soc. Chim. Fr., 1872, 17, 436Google Scholar
  10. [10]
    Knoevenagel E., Ber. Dtsch. Chem. Ges., 1894, 27, 2345CrossRefGoogle Scholar
  11. [11]
    Li C., Feng X. W., Wang N., Zhou Y. J., Yu X. Q., Green Chem., 2008, 10, 616CrossRefGoogle Scholar
  12. [12]
    López-Iglesias M., Busto E., Gotor V., Gotor-Fernándes V., Adv. Synth. Catal., 2011, 353, 2345CrossRefGoogle Scholar
  13. [13]
    Li H. H., He Y. H., Yuan Y., Guan Z., Green Chem., 2011, 13, 185CrossRefGoogle Scholar
  14. [14]
    Hu W., Guan Z., Deng X., He Y. H., Biochimie, 2012, 94, 656CrossRefGoogle Scholar
  15. [15]
    Wang B., Liu J., Tang X. L., Cheng C., Gu J. L., Dai L. Y., Yu H. W., Tetrahedron Lett., 2010, 51, 309CrossRefGoogle Scholar
  16. [16]
    Wang B., Tang X. L., Liu J., Yu H. W., Tetrahedron Lett., 2010, 51, 6360CrossRefGoogle Scholar
  17. [17]
    Tang X. L., Liu J., Wang B., Yu H. W., World J. Microbiol. Biotechnol., 2011, 27, 129CrossRefGoogle Scholar
  18. [18]
    Zhang Y., Wang M. G., Liang J., Shang Z. C., Lett. Org. Chem., 2010, 7, 27CrossRefGoogle Scholar
  19. [19]
    Martínez-Castañeda Á., Rodríguez-Solla H., Concellón C., Amo V. D., J. Org. Chem., 2012, 77, 10375CrossRefGoogle Scholar
  20. [20]
    Li Z. N., Chen X. L., Fu Y. J., Wang W., Luo M., Res. Chem. Intermed., 2012, 38, 25CrossRefGoogle Scholar
  21. [21]
    Yadav J. S., Bhunia D. C., Singh V. K., Srihari P., Tetrahedron Lett., 2009, 50, 2470CrossRefGoogle Scholar
  22. [22]
    Liu R. D., Zhang J., Eur. J. Chem., 2011, 2, 308CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2014

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouP. R. China

Personalised recommendations