In Silico Pharmacology

, 6:7 | Cite as

lncRNA-based study of epigenetic regulations in diabetic peripheral neuropathy

  • Muhamad Fachrul
  • Didik H. Utomo
  • Arli A. Parikesit
Original Research
  • 13 Downloads

Abstract

Diabetes remains one of the most prevalent non-communicable diseases in the world, affecting over 400 million of people worldwide, causing serious complications leading to amputations and even death. Over the years, researchers have found that, in addition to genomic mutations, epigenetic mechanisms also play a role in the development of diabetes-specifically type-2 diabetes. Long noncoding RNAs (lncRNAs) have been linked to mediate epigenetic mechanisms, including those in late-stage diabetes. This study attempts to assess the unexplored topic of how lncRNAs could be used to assess the epigenetic mechanisms present in diabetic peripheral neuropathy (DPN); a serious complication of the disease often leading to amputation. Differential lncRNA expression analysis was done with a dataset containing DPN and healthy patients. Standard and corrected t test, and also LIMMA was applied. Results of this study indicates the usefulness of lncRNAs as an exploratory tool to elucidate the complexity of the epigenetic mechanisms of human DPN.

Keywords

Epigenetic lncRNA In Silico Type-2 diabetes 

Notes

Acknowledgement

Authors thanks to Indonesia International Institute for Life Sciences for facilitated this research.

References

  1. Al-Haddad R, Karnib N, Assaad RA, Bilen Y, Emmanuel N, Ghanem A et al (2016) Epigenetic changes in diabetes. Neurosci Lett 625:64–69.  https://doi.org/10.1016/j.neulet.2016.04.046 CrossRefPubMedGoogle Scholar
  2. Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome.  https://doi.org/10.1007/s00335-008-9136-7 PubMedGoogle Scholar
  3. Belinky F, Bahir I, Stelzer G, Zimmerman S, Rosen N, Nativ N et al (2013) Non-redundant compendium of human ncRNA genes in GeneCards. Bioinform 29(2):255–261.  https://doi.org/10.1093/bioinformatics/bts676 CrossRefGoogle Scholar
  4. Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U et al (2016) Long non-coding RNAs: mechanism of action and functional utility. NonCoding RNA Res 1(1):43–50.  https://doi.org/10.1016/j.ncrna.2016.11.002 CrossRefGoogle Scholar
  5. Boulton AJM (2005) Management of diabetic peripheral neuropathy. Clin Diabetes 23(1):9–15CrossRefGoogle Scholar
  6. Davis S, Meltzer PS (2007) GEOquery: a bridge between the gene expression omnibus (GEO) and BioConductor. Bioinform 23(14):1846–1847.  https://doi.org/10.1093/bioinformatics/btm254 CrossRefGoogle Scholar
  7. Dean L, McEntyre J (2004) The genetic landscape of diabetes. National Center for Biotechnology Information (US), Bethesda (MD). https://www.ncbi.nlm.nih.gov/books/NBK1667/ Google Scholar
  8. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210CrossRefPubMedPubMedCentralGoogle Scholar
  9. Feinberg AP, Fallin MD (2015) Epigenetics at the crossroads of genes and the environment. JAMA 314(11):1129–1130.  https://doi.org/10.1001/jama.2015.10414 CrossRefPubMedGoogle Scholar
  10. Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A et al (2013) The tissue-specific lncRNA fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24(2):206–214.  https://doi.org/10.1016/j.devcel.2012.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hara K, Shojima N, Hosoe J, Kadowaki T (2014) Genetic architecture of type 2 diabetes. Biochem Biophys Res Commun 452:213–220.  https://doi.org/10.1016/j.bbrc.2014.08.012 CrossRefPubMedGoogle Scholar
  12. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS et al (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12(2):115–121.  https://doi.org/10.1038/nmeth.3252 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Karachanak-Yankova S, Dimova R, Nikolova D, Nesheva D, Koprinarova M, Maslyankov S et al (2015) Epigenetic alterations in patients with type 2 diabetes mellitus. Balkan J Med Genet 18(2):15–24.  https://doi.org/10.1515/bjmg-2015-0081 PubMedGoogle Scholar
  14. Kolarz B, Majdan M (2017) Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Semin Arthritis Rheum.  https://doi.org/10.1016/j.semarthrit.2017.01.003 PubMedGoogle Scholar
  15. Kornfeld JW, Brüning JC (2014) Regulation of metabolism by long, non-coding RNAs. Front Genet.  https://doi.org/10.3389/fgene.2014.00057 PubMedPubMedCentralGoogle Scholar
  16. Li Q, Su Z, Xu X, Liu G, Song X, Wang R et al (2012) AS1DHRS4, a head-to-head natural antisense transcript, silences the DHRS4 gene cluster in cis and trans. Proc Natl Acad Sci 109(35):14110–14115.  https://doi.org/10.1073/pnas.1116597109 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A (2014) International society of neuropathology-haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24(5):429–435.  https://doi.org/10.1111/bpa.12171 CrossRefPubMedGoogle Scholar
  18. Lu MC, Yu HC, Yu CL, Huang HB, Koo M, Tung CH, Lai NS (2016) Increased expression of long noncoding RNAs LOC100652951 and LOC100506036 in T cells from patients with rheumatoid arthritis facilitates the inflammatory responses. Immunol Res 64(2):576–583.  https://doi.org/10.1007/s12026-015-8756-8 CrossRefPubMedGoogle Scholar
  19. Luo L, Xu J (2017) Transcriptional profiling of diabetic peripheral neuropathy patients, diabetic patients, and healthy participants. J Diabetes Res.  https://doi.org/10.1155/2017/8103904 Google Scholar
  20. Mattick JS (2005) The functional genomics of noncoding RNA. Science 309(5740):1527–1528.  https://doi.org/10.1126/science.1117806 CrossRefPubMedGoogle Scholar
  21. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36(1):40–45.  https://doi.org/10.1038/ng1285 CrossRefPubMedGoogle Scholar
  22. Parikesit AA, Steiner L, Stadler PF, Prohaska SJ (2014) Pitfalls of ascertainment biases in genome annotations—computing comparable protein domain distributions in Eukarya. Malays J Fundam Appl Sci 10(2):65–75.  https://doi.org/10.11113/mjfas.v10n2.57 Google Scholar
  23. Prohaska SJ, Stadler PF, Krakauer DC (2010) Innovation in gene regulation: the case of chromatin computation. J Theor Biol 265(1):27–44.  https://doi.org/10.1016/j.jtbi.2010.03.011 CrossRefPubMedGoogle Scholar
  24. Pullen TJ, Rutter GA (2014) Roles of lncRNAs in pancreatic beta cell identity and diabetes susceptibility. Front Genet.  https://doi.org/10.3389/fgene.2014.00193 PubMedPubMedCentralGoogle Scholar
  25. Reddy MA, Zhang E, Natarajan R (2015) Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58(3):443–455.  https://doi.org/10.1007/s00125-014-3462-y CrossRefPubMedGoogle Scholar
  26. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47–e47.  https://doi.org/10.1093/nar/gkv007 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rouillard AD, Gundersen GW, Fernandez NF, Wang Z, Monteiro CD, McDermott MG, Ma’ayan A (2016) The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database.  https://doi.org/10.1093/database/baw100 PubMedPubMedCentralGoogle Scholar
  28. RStudio Team (2015) Integrated development for R. RStudio, Inc. R. RStudio, Inc., BostonGoogle Scholar
  29. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M et al (2010) GeneCards Version 3: the human gene integrator. Database J Biol Databases Curation.  https://doi.org/10.1093/database/baq020 Google Scholar
  30. Steiner L, Hopp L, Wirth H, Galle J, Binder H, Prohaska SJ, Rohlf T (2012) A global genome segmentation method for exploration of epigenetic patterns. PLoS ONE 7(10):e46811.  https://doi.org/10.1371/journal.pone.0046811 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Prot Bioinf.  https://doi.org/10.1002/cpbi.5 Google Scholar
  32. Swami M (2009) Epigenetics: misreading the code. Nat Publ Group 9:461.  https://doi.org/10.1038/nrc2679 Google Scholar
  33. World Health Organization (2016a) Global report on diabetes. Isbn, 978, 88. ISBN: 978 92 4 156525 7Google Scholar
  34. World Health Organization (2016b) WHO | diabetes. WHO, GenevaGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Muhamad Fachrul
    • 1
  • Didik H. Utomo
    • 2
    • 3
  • Arli A. Parikesit
    • 1
  1. 1.Bioinformatics Department, School of Life SciencesIndonesia International Institute for Life SciencesJakartaIndonesia
  2. 2.Biology Department, Faculty of SciencesBrawijaya UniversityMalangIndonesia
  3. 3.Research and Education Center for BioinformaticsNusantara Institute for Life Science and TechnologyJakartaIndonesia

Personalised recommendations