Effect of Brønsted acidity of HY zeolites in adsorption of methylene blue and comparative study with bentonite

  • T. KasmiEmail author
  • A. Soualah
  • S. Mignard
  • I. Batonneau-Gener
Research Article


In the present study, HY zeolite with various Si/Al ratios have been used as adsorbents for the removal of a cationic dye; methylene blue, from aqueous solution using a batch process, and a comparative study with bentonite was conducted. Characterizations of the adsorbents were carried out by nitrogen adsorption–desorption, pyridine chemisorption followed by infrared spectroscopy and X-ray fluorescence. The effects of various parameters such as contact time, initial MB concentration, adsorbent concentration and solution pH were investigated. The adsorption of methylene blue on the zeolites is directly related to the Brønsted acidity where each molecule of MB corresponds to one Brønsted acid site. This means that the adsorption mechanism occurs via a cation exchange. So, adsorption of MB can be used to determine the Brønsted acidity of HY zeolites. The highest removal efficiency (181 mg g−1) corresponding to 86% of the abatement rate has been obtained with the bentonite. At lower dye concentrations (≤ 50 mg L−1), HY (16.6) and bentonite have a close adsorption capacities, 93 mg g−1 (97%) and 96 mg g−1 (99%) respectively. For both material types, the pseudo-second-order kinetic model fits very well with the experimental data. Equilibrium data fitted well the Langmuir isotherm model in the studied concentrations range of MB.


Adsorption Bentonite Brønsted acidity Methylene blue Zeolite 



The authors would like to acknowledge the support provided by both the Algerian and French governments for funding this work through project Tassili No. 12-MDU/859. We are grateful to Faculty of Technology, Abderrahmane Mira University of Bejaia for its support. We also want to thank Mr. Brahim KASMI of the INALCO (Institut Nationale des Langues et Civilisations Orientales), France, for the valuable corrections of the English language.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Ganjali MR, Khoobi M, Nazmara S, Mahvi AH. Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magn Magn Mater. 2015;404:179–89. Scholar
  2. 2.
    Vadivelan V, Kumar KV. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci. 2005;286:90–100.CrossRefGoogle Scholar
  3. 3.
    Augustine EO. Sorptive removal of methylene blue from aqueous solution using palm kernel fibre: effect of fibre dose. J Biochem Eng. 2008;40:8–18.CrossRefGoogle Scholar
  4. 4.
    Ana RR, Olga CN, Manuel FRP, Adrián MTS. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int. 2015;75:33–51.CrossRefGoogle Scholar
  5. 5.
    Reddy PV, Kim KH. A review of photochemical approaches for the treatment of a wide range of pesticides. J Hazard Mater. 2015;285:325–35.CrossRefGoogle Scholar
  6. 6.
    Mirzadeh SS, Khezri SM, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA. Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. J Environ Health Sci Eng. 2014;12:6.CrossRefGoogle Scholar
  7. 7.
    Kamani H, Safari GH, Asgari G, Ashrafi SD. Data on modeling of enzymatic elimination of direct red 81 using response surface methodology. Data Brief. 2018;18:80–6.CrossRefGoogle Scholar
  8. 8.
    Ashrafi SD, Rezaei S, Forootanfar H, Mahvi AH, Faramazi MA. The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, Paraconiothyrium variabile. Int Biodeterior Biodegrad. 2013;85:173–81.CrossRefGoogle Scholar
  9. 9.
    Shirmardi M, Mesdaghinia A, Mahvi AH, Nasseri S, Nabizadeh R. Kinetics and equilibrium studies on adsorption of acid red 18 (azo-dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. E-J Chem. 2012;9:2371–83.CrossRefGoogle Scholar
  10. 10.
    Ashrafi SD, Kamani H, Mahvi AH. The optimization study of direct red 81 and methylene blue adsorption on NaOH-modified rice husk. Desalin Water Treat. 2014;57(2):738–46.CrossRefGoogle Scholar
  11. 11.
    Shirmardi M, Mahvi AH, Mesdaghinia A, Nasseri S, Nabizadeh R. Adsorption of acid red18 dye from aqueous solution using single-wall carbon nanotubes: kinetic and equilibrium. Desalin Water Treat. 2013;51:6507–16.CrossRefGoogle Scholar
  12. 12.
    Shirmardi M, Mahvi AH, Hashemzadeh B, Naeimabadi A, Hassani G, Vosoughi NM. The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes. Korean J Chem Eng. 2013;30:1603–8.CrossRefGoogle Scholar
  13. 13.
    Andrejkovičová S, Sudagar A, Rocha J, Patinha C, Hajjaji W, Ferreira da Silva E, et al. The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Appl Clay Sci. 2016;126:141–52.CrossRefGoogle Scholar
  14. 14.
    Kurniawan A, Sutiono H, Ju YH, Soetaredjo FE, Ayucitra A, Yudha A, et al. Utilization of rarasaponin natural surfactant for organo-bentonite preparation: application for methylene blue removal from aqueous effluent. Microporous Mesoporous Mater. 2011;142:184–93.CrossRefGoogle Scholar
  15. 15.
    Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite Y. J Chem Eng. 2009;145:496–504.CrossRefGoogle Scholar
  16. 16.
    Sapawe N, Jalil AA, Triwahyono S, Shah MIA, Jusoh R, Salleh NFM, et al. Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. J Chem Eng. 2013;229:388–98.CrossRefGoogle Scholar
  17. 17.
    Jamil TS, Abdel-Ghafar HH, Ibrahim HS, Abd-El-Maksoud IH. Removal of methylene blue by two zeolites prepared from naturally occurring Egyptian kaolin as cost effective technique. Solid State Sci. 2011;13:1844–51.CrossRefGoogle Scholar
  18. 18.
    Martucci A, Pasti L, Marchetti N, Cavazzini A, Dondi F, Alberti A. Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites. Microporous Mesoporous Mater. 2012;148:174–83.CrossRefGoogle Scholar
  19. 19.
    Sannino F, Ruocco S, Marocco A, Esposito S, Pansini M. Cyclic process of simazine removal from waters by adsorption on zeolite H-Y and its regeneration by thermal treatment. J Hazard Mater. 2012;229-230:354–60.CrossRefGoogle Scholar
  20. 20.
    Chaouati N, Soualah A, Hussein I, Comparot JD, Pinard L. Formation of weak and strong Brønsted acid sites during alkaline treatment on MOR zeolite. Appl Catal A Gen. 2016;526:95–104.CrossRefGoogle Scholar
  21. 21.
    Paixao V, Carvalho AP, Rocha J, Fernandes A, Martins A. Modification of MOR by desilication treatments: structural, textural and acidic characterization. Microporous Mesoporous Mater. 2010;131:350–7.CrossRefGoogle Scholar
  22. 22.
    Guisnet M, Ribeiro FR. Les zéolithes: un nanomonde au service de la catalyse. EDP Sciences: chimie, matériaux, avenue du Hoggar, France; 2006.Google Scholar
  23. 23.
    Ashrafi SD, Kamani H, Soheil Arezomand H, Yousefi N, Mahvi AH. Optimization and modeling of process variables for adsorption of basic blue 41 on NaOH-modified rice husk using response surface methodology. Desalin Water Treat. 2015;57(30):14051–9.CrossRefGoogle Scholar
  24. 24.
    Takdastan A, Mahvi AH, Lima EC, Shirmardi M, Babaei AA, Goudarzi G, et al. Preparation, characterization, and application of activated carbon from low-cost material for the adsorption of tetracycline antibiotic from aqueous solutions. Water Sci Technol. 2016;74:2349–63.CrossRefGoogle Scholar
  25. 25.
    Almeida CAP, Debacher NA, Downs AJ, Cottet L, Mello CAD. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interface Sci. 2009;332:46–53.CrossRefGoogle Scholar
  26. 26.
    Alver E, Metin AU. Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. J Chem Eng. 2012;200–202:59–67.CrossRefGoogle Scholar
  27. 27.
    Ashrafi SD, Kamani H, Jaafari J, Mahvi AH. Experimental design and response surface modeling for optimization of fluoroquinolone removal from aqueous solution by NaOH-modified rice husk. Desalin Water Treat. 2015;57(35):16456–65.CrossRefGoogle Scholar
  28. 28.
    Rida K, Bouraoui S, Hadnine S. Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl Clay Sci. 2013;83–84:99–105.CrossRefGoogle Scholar
  29. 29.
    Sohrabnezhad S, Pourahmad A. Comparison absorption of new methylene blue dye in zeolite and nanocrystal zeolite. Desalination. 2010;256:84–9.CrossRefGoogle Scholar
  30. 30.
    Li C, Zhong H, Wang S, Xue J, Zhang Z. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. J Ind Eng Chem. 2015;23:344–52.CrossRefGoogle Scholar
  31. 31.
    Daou I, Zegaoui O, Chfaira R, Ahlafi H, Moussout H. Physico-chemical characterization and kinetic study of methylene blue adsorption onto a Moroccan bentonite. Int J Sci Res Publ. 2015;5:1–9.Google Scholar
  32. 32.
    Wang L, Zhang J, Wang A. Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination. 2011;266:33–9.CrossRefGoogle Scholar
  33. 33.
    Ofomaja AE. Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust. J Chem Eng. 2008;143:85–95.CrossRefGoogle Scholar
  34. 34.
    Chabania M, Amrane A, Bensmaili A. Kinetic modelling of the adsorption of nitrates by ion exchange resin. J Chem Eng. 2006;125:111–7.CrossRefGoogle Scholar
  35. 35.
    Gupta VK, Rastogi A. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazrd Mater. 2009;163:396–402.CrossRefGoogle Scholar
  36. 36.
    Giles CH, Smith D, Huitson A. A general treatment and classification of the solute adsorption isotherm. J Colloid Interface Sci. 1974;47:755–65.CrossRefGoogle Scholar
  37. 37.
    Mudyawabikwa B, Mungondori HH, Tichagwa L, Katwire DM. Methylene blue removal using a low-cost activated carbon adsorbent from tobacco stems: kinetic and equilibrium studies. Water Sci Technol. 2017;75(10):2390–402.CrossRefGoogle Scholar
  38. 38.
    Roosta M, Ghaedi M, Daneshfar A, Sahraei R, Asghari A. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Ultrason Sonochem. 2014;21(1):242–52.CrossRefGoogle Scholar
  39. 39.
    EL Alouani M, Alehyen S, EL Achouri M, Taibi M. Removal of cationic dye – methylene blue- from aqueous solution by adsorption on fly ash-based Geopolymer. J Mater Environ Sci. 2018;9(1):32–46.Google Scholar
  40. 40.
    Sen TK, Afroze S, Ang H. Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut. 2011;218:499–515.CrossRefGoogle Scholar
  41. 41.
    Şahin Ö, Kaya M, Saka C. Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Appl Clay Sci. 2015;116–117:46–53.Google Scholar
  42. 42.
    Sarma GK, SenGupta S, Bhattacharyya KG. Methylene blue adsorption on natural and modified clays. Sep Sci Technol. 2011;46:1602–14.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • T. Kasmi
    • 1
    • 2
    Email author
  • A. Soualah
    • 1
  • S. Mignard
    • 2
  • I. Batonneau-Gener
    • 2
  1. 1.Laboratoire de Physico-chimie des Matériaux et Catalyse, Faculté des Sciences ExactesUniversité de BejaiaBejaiaAlgeria
  2. 2.IC2MP, UMR 7285 CNRS, Faculté des SciencesUniversité de PoitiersPoitiers CedexFrance

Personalised recommendations