Advertisement

The landscape of microbiota research in Iran; a bibliometric and network analysis

  • Hossein Aazami
  • Hojat DehghanBanadaki
  • Hanieh-Sadat EjtahedEmail author
  • Noushin Fahimfar
  • Farideh Razi
  • Ahmad-Reza Soroush
  • Shirin Hasani-Ranjbar
  • Parvin Pasalar
  • Sara Ahmadi Badi
  • Seyed-Davar SiadatEmail author
  • Bagher Larijani
Research article
  • 6 Downloads
Part of the following topical collections:
  1. Cross-talk between gut microbiota and the endocrine system

Abstract

Objectives

To introduce bibliometric features of Iranian documents on microbiota and to provide descriptive information about retrieved documents related to the medical sciences and documents utilizing molecular techniques for microbiota detection.

Methods

This is a descriptive bibliometric study of all Iranian documents on microbiota in any language that were indexed in Scopus before 7 September 2019. We assessed the research performance through statistical analysis of the bibliometric indicators, including number of publications, citations, institutions and journals activities, co-citations and bibliographic couplings, and network analysis of co-authorships, countries’ collaborations, terms and keywords.

Results

We extracted 425 relevant documents, 260 of which pertain to the medical sciences. The most focused microbiota modulating interventions and diseases in 33 clinical trials are ‘synbiotics’ (n = 8) and ‘probiotics’ (n = 8), and ‘Obesity’ (n = 3) and ‘non-alcoholic fatty liver disease’ (n = 3), respectively. During the last decade, Iranian microbiota publications have increasingly grown with a constant upward slope, particularly in the area of medical sciences after 2016. Citation counting reveals that originals and reviews have been cited 4221 times, with an average 10.76 citations and H-index of 34. The most significant performance in publishing Iranian microbiota documents belongs to ‘Tehran University of Medical Sciences’ as the active institution (n = 89 publications) and the supporting sponsor (n = 19), ‘Microbial Pathogenesis’ as the productive journal (n = 12), ‘Seidavi A’ as the most authorships (n = 19), and ‘the United States’ as the collaborative country (n = 46).

Conclusions

The qualitative and quantitative information of this study will be a practical guidance for future study planning and policy-decision making.

Keywords

Microbiota Microbiome Scientometrics Bibliometrics Iran 

Notes

Acknowledgements

Not applicable.

Authors’ contributions

H.A., H.D., H.E., F.R. and P.P. conceived of the presented idea. S.D.S., B.L. and P.P. developed the theory and H.A. performed the computations. N.F., A.S., S.A.B, and S.H.R. verified the analytical methods. H.E. investigated the molecular technique aspect of retrieved articles, H.E., H.A., and H.D. contributed to the interpretation of the results and S.D.S supervised the findings of this work. H.D. and H.A. wrote the manuscript in consultation with H.E. and N.F. All authors discussed the results, provided critical feedback, helped shape the research and analysis, and contributed to the final manuscript.

Funding information

This study was funded by the Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Supplementary material

40200_2020_488_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1319 kb)

References

  1. 1.
    Sokolov-Mladenović S, Cvetanović S, Mladenović I. R&D expenditure and economic growth: EU28 evidence for the period 2002–2012. Econ Res-Ekonomska istraživanja. 2016;29(1):1005–20.CrossRefGoogle Scholar
  2. 2.
    Sharifi V, Rahimi Movaghar A, Mohammadi M, Goodarzi R, Izadian E, Farhoudian A et al. Analysis of mental health research in the Islamic Republic of Iran over 3 decades: a scientometric study. 2008.Google Scholar
  3. 3.
    Ataie-Ashtiani B. Chinese and Iranian scientific publications: fast growth and poor ethics. Sci Eng Ethics. 2017;23(1):317–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Akhondzadeh S. Iranian science shows world's fastest growth: ranks 17th in science production in 2012. Avicenna J Med Biotechnol. 2013;5(3):139.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Agarwal A, Durairajanayagam D, Tatagari S, Esteves SC, Harlev A, Henkel R, et al. Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian J Androl. 2016;18(2):296–309.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li Y, Zou Z, Bian X, Huang Y, Wang Y, Yang C, et al. Fecal microbiota transplantation research output from 2004 to 2017: a bibliometric analysis. PeerJ. 2019;7:e6411.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pritchard A. Statistical bibliography or bibliometrics. J Doc. 1969;25(4):348–9.Google Scholar
  8. 8.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Baudoin L, Sapinho D, Maddi A, Miotti L. Scientometric analysis of the term “microbiota” in research publications (1999-2017): A second youth of a century-old concept. FEMS Microbiol Lett. 2019;366(12).Google Scholar
  10. 10.
    The unseen life of the soil. Science. 1927;65(1695):x–x.  https://doi.org/10.1126/science.65.1695.0x.
  11. 11.
    Crawford JJ, Shankle RJ. Application of newer methods to study the importance of root canal and oral microbiota in endodontics. Oral Surg Oral Med Oral Pathol. 1961;14(9):1109–23.CrossRefGoogle Scholar
  12. 12.
    Gibbons R, Socransky S, Sawyer S, Kapsimalis B, MacDonald J. The microbiota of the gingival crevice area of man—II: the predominant cultivable organisms. Arch Oral Biol. 1963;8(3):281–9.CrossRefGoogle Scholar
  13. 13.
    Socransky S, Gibbons R, Dale A, Bortnick L, Rosenthal E, Macdonald J. The microbiota of the gingival crevice area of man—I: Total microscopic and viable counts and counts of specific organisms. Arch Oral Biol. 1963;8(3):275–80.CrossRefGoogle Scholar
  14. 14.
    Mann S, Masson FM, Oxford A. Effect of feeding aureomycin to calves upon the establishment of their normal rumen microflora and microfauna. Br J Nutr. 1954;8(3):246–52.CrossRefGoogle Scholar
  15. 15.
    Baldwin R, Wood W, Emery R. Conversion of glucose-C14 to propionate by the rumen microbiota. J Bacteriol. 1963;85(6):1346–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mraz O, Cerny L, editors. Functional Composition+ Main Metabolites of Rumen Microflora in Cattle with Definite Food Intake. FOLIA MICROBIOLOGICA; 1964: INST MICROBIOLOGY, VIDENSKA 1083, PRAGUE 4 142 20, CZECH REPUBLIC.Google Scholar
  17. 17.
    Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH human microbiome project. Genome Res. 2009;19(12):2317–23.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Regan NHMPATlpngLPJLAMPDDXRFLBRRPMK. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007–2016. Microbiome. 2019;7:1–19.CrossRefGoogle Scholar
  19. 19.
    O’Mahony SM, Clarke G, Borre Y, Dinan T, Cryan J. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.CrossRefGoogle Scholar
  20. 20.
    Kamada N, Chen GY, Inohara N, Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–90.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological perspective. Sci Transl Med. 2012;4(137):137rv5-rv5.CrossRefGoogle Scholar
  22. 22.
    Collado MC, Cernada M, Baüerl C, Vento M, Pérez-Martínez G. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes. 2012;3(4):352–65.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bar-Ilan J. Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar. Scientometrics. 2010;82(3):495–506.CrossRefGoogle Scholar
  24. 24.
    Van Eck N, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2009;84(2):523–38.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Team S. Science of science (Sci2) tool. Indiana University and SciTech Strategies. 2009.Google Scholar
  26. 26.
    Nazemi M, Amini M, Salehi R. Difference in quantities of bifidobacteria from the intestinal microflora of individuals with type 2 diabetes and healthy individuals from Iran. Journal of Isfahan Medical School. 2013;31(247):1216–1225.Google Scholar
  27. 27.
    Nasrollahzadeh D, Malekzadeh R, Ploner A, Shakeri R, Sotoudeh M, Fahimi S, et al. Variations of gastric corpus microbiota are associated with early esophageal squamous cell carcinoma and squamous dysplasia. Sci Rep. 2015;5:8820.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Heidarian F, Noormohammadi Z, Aghdaei HA, Alebouyeh M. Relative abundance of streptococcus spp. and its association with disease activity in inflammatory bowel disease patients compared with controls. Arch Clin Infect Dis. 2017;12(2) e57291.Google Scholar
  29. 29.
    Nabizadeh E, Jazani NH, Bagheri M, Shahabi S. Association of altered gut microbiota composition with chronic urticaria. Ann Allergy Asthma Immunol. 2017;119(1):48–53.CrossRefGoogle Scholar
  30. 30.
    Navab-Moghadam F, Sedighi M, Khamseh ME, Alaei-Shahmiri F, Talebi M, Razavi S, et al. The association of type II diabetes with gut microbiota composition. Microb Pathog. 2017;110:630–6.CrossRefGoogle Scholar
  31. 31.
    Sedighi M, Razavi S, Navab-Moghadam F, Khamseh ME, Alaei-Shahmiri F, Mehrtash A, et al. Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microb Pathog. 2017;111:362–9.CrossRefGoogle Scholar
  32. 32.
    Zamani S, Shariati SH, Zali MR, Aghdaei HA, Asiabar AS, Bokaie S, et al. Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog. 2017;9(1):53.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ghavami SB, Rostami E, Sephay AA, Shahrokh S, Balaii H, Aghdaei HA, et al. Alterations of the human gut Methanobrevibacter smithii as a biomarker for inflammatory bowel diseases. Microb Pathog. 2018;117:285–9.CrossRefGoogle Scholar
  34. 34.
    Rezasoltani S, Aghdaei HA, Dabiri H, Sepahi AA, Modarressi MH, Mojarad EN. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb Pathog. 2018;124:244–9.CrossRefGoogle Scholar
  35. 35.
    Rezasoltani S, Sharafkhah M, Aghdaei HA, Mojarad EN, Dabiri H, Sepahi AA, et al. Applying simple linear combination, multiple logistic and factor analysis methods for candidate fecal bacteria as novel biomarkers for early detection of adenomatous polyps and colon cancer. J Microbiol Methods. 2018;155:82–8.CrossRefGoogle Scholar
  36. 36.
    Al-Bayati L, Fasaei BN, Merat S, Bahonar A. Longitudinal analyses of gut-associated bacterial microbiota in ulcerative colitis patients. Arch Iran Med (AIM). 2018;21(12).Google Scholar
  37. 37.
    Tavasoli S, Alebouyeh M, Naji M, Shakiba majd G, Shabani Nashtaei M, Broumandnia N, et al. The association of the intestinal oxalate degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: a case-control study. BJU Int. 2019;125(1):133–143.Google Scholar
  38. 38.
    Mohammadzadeh N, Kalani BS, Bolori S, Azadegan A, Gholami A, Mohammadzadeh R, et al. Identification of an intestinal microbiota signature associated with hospitalized patients with diarrhea. Acta Microbiol Immunol Hung. 2019:1–14.Google Scholar
  39. 39.
    Heidarian F, Alebouyeh M, Shahrokh S, Balaii H, Zali MR. Altered fecal bacterial composition correlates with disease activity in inflammatory bowel disease and the extent of IL8 induction. Curr Res Transl Med. 2019;67(2):41–50.CrossRefGoogle Scholar
  40. 40.
    Moossavi S, Engen PA, Ghanbari R, Green SJ, Naqib A, Bishehsari F, et al. Assessment of the impact of different fecal storage protocols on the microbiota diversity and composition: a pilot study. BMC Microbiol. 2019;19(1):145.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nami Y, Haghshenas B, Khosroushahi AY. Molecular identification and probiotic potential characterization of lactic acid Bacteria isolated from human vaginal microbiota. Adv Pharm Bull. 2018;8(4):683–95.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mousavi SH, Mehrara S, Barzegari A, Ostadrahimi A. Correlation of gut microbiota profile with body mass index among school age children. Iran Red Crescent Med J. 2018;20(4):e58049 (In Press).Google Scholar
  43. 43.
    Ejtahed H-S, Tito RY, Siadat S-D, Hasani-Ranjbar S, Hoseini-Tavassol Z, Rymenans L, et al. Metformin induces weight loss associated with gut microbiota alteration in non-diabetic obese women: a randomized double-blind clinical trial. Eur J Endocrinol. 2018;180(3):165–176(aop).Google Scholar
  44. 44.
    Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, et al. Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: a randomized clinical trial. Appetite. 2019;141:104301.CrossRefGoogle Scholar
  45. 45.
    Laffin MR, Tayebi Khosroshahi H, Park H, Laffin LJ, Madsen K, Kafil HS, et al. Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: microbial analysis from a randomized placebo-controlled trial. Hemodial Int. 2019;23(3):343–347.Google Scholar
  46. 46.
    Ahmadi S, Nagpal R, Wang S, Gagliano J, Kitzman DW, Soleimanian-Zad S, et al. Prebiotics from acorn and sago prevent high-fat-diet-induced insulin resistance via microbiome–gut–brain axis modulation. J Nutr Biochem. 2019;67:1–13.CrossRefGoogle Scholar
  47. 47.
    Hosseinifard E-S, Morshedi M, Bavafa-Valenlia K, Saghafi-Asl M. The novel insight into anti-inflammatory and anxiolytic effects of psychobiotics in diabetic rats: possible link between gut microbiota and brain regions. Eur J Nutr. 2019;58(01):1–15.Google Scholar
  48. 48.
    Ghazifard A, Kasra-Kermanshahi R, Far ZE. Identification of thermophilic and mesophilic bacteria and fungi in Esfahan (Iran) municipal solid waste compost. Waste Manag Res. 2001;19(3):257–61.CrossRefGoogle Scholar
  49. 49.
    Seidavi A, Mirhosseini SZ, Shivazad M, Chamani M, Sadeghi AA. The development and evaluation of a duplex polymerase chain reaction detection of Bifidobacterium spp. and Lactobacillus spp. in duodenum, jejunum, ileum and cecum of broilers. J Rapid Meth Aut Microbiol. 2008;16(1):100–12.CrossRefGoogle Scholar
  50. 50.
    Ghiyasi M, Rezaei M, Sayyahzadeh H, Firouzbakhsh F, Attar A. Effects of prebiotic (Fermacto) in low protein diet on some blood parameters and intestinal microbiota of broiler chicks. Ital J Anim Sci. 2008;7(3):313–20.CrossRefGoogle Scholar
  51. 51.
    Jajarm H, Jahanbin A, Mokhber N, Gooyandeh S, Mansourian A, Beitollahi J. Effects of persica mouthwash on oral microbiota of cleft lip and palate patients during fixed orthodontic treatment. J Appl Sci. 2009;9:1593–6.CrossRefGoogle Scholar
  52. 52.
    Henderson G, Cox F, Ganesh S, Jonker A, Young W, Collaborators GRC, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Llewellyn MS, Boutin S, Hoseinifar SH, Derome N. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol. 2014;5:207.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Davari S, Talaei SA, Alaei H. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience. 2013;240:287–96.CrossRefGoogle Scholar
  55. 55.
    Bishehsari F, Mahdavinia M, Vacca M, Malekzadeh R, Mariani-Costantini R. Epidemiological transition of colorectal cancer in developing countries: environmental factors, molecular pathways, and opportunities for prevention. World J Gastroenterol: WJG. 2014;20(20):6055–72.CrossRefGoogle Scholar
  56. 56.
    Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif S-K, Asghari-Jafarabadi M, Zavvari S. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition. 2014;30(4):430–5.CrossRefGoogle Scholar
  57. 57.
    Rastmanesh R. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem Biol Interact. 2011;189(1–2):1–8.CrossRefGoogle Scholar
  58. 58.
    Homayouni A, Bastani P, Ziyadi S. Mohammad-Alizadeh-Charandabi S, Ghalibaf M, Mortazavian AM et al. effects of probiotics on the recurrence of bacterial vaginosis: a review. J Low Genit Tract Dis. 2014;18(1):79–86.CrossRefGoogle Scholar
  59. 59.
    Huang X, Fan X, Ying J, Chen S. Emerging trends and research foci in gastrointestinal microbiome. J Transl Med. 2019;17(1):67.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yao H, Wan J-Y, Wang C-Z, Li L, Wang J, Li Y, et al. Bibliometric analysis of research on the role of intestinal microbiota in obesity. PeerJ. 2018;6:e5091.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cho YA, Kim J. Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine. 2015;94(43) e1714.Google Scholar
  63. 63.
    Sarao LK, Arora M. Probiotics, prebiotics, and microencapsulation: a review. Crit Rev Food Sci Nutr. 2017;57(2):344–71.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Mahmoudi R, Fakhri O, Farhoodi A, Kaboudari A, Rahimi SF. A review on probiotic dairy products as functional foods reported from Iran. Int J Food Nutr Saf. 2015;6(1):2.Google Scholar
  65. 65.
    Ejtahed H-S, Angoorani P, Soroush A-R, Atlasi R, Hasani-Ranjbar S, Mortazavian AM, et al. Probiotics supplementation for the obesity management; a systematic review of animal studies and clinical trials. J Funct Foods. 2019;52:228–42.CrossRefGoogle Scholar
  66. 66.
    Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(S2):S1–S63.CrossRefGoogle Scholar
  67. 67.
    Ejtahed H-S, Soroush A-R, Siadat S-D, Hoseini-Tavassol Z, Larijani B, Hasani-Ranjbar S. Targeting obesity management through gut microbiota modulation by herbal products: a systematic review. Complement Ther Med. 2018;42:184–204.Google Scholar
  68. 68.
    Anderson A, McNaught C, Jain P, MacFie J. Randomised clinical trial of synbiotic therapy in elective surgical patients. Gut. 2004;53(2):241–5.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ejtahed H-S, Tabatabaei-Malazy O, Soroush A-R, Hasani-Ranjbar S, Siadat S-D, Raes J, et al. Worldwide trends in scientific publications on association of gut microbiota with obesity. Iran J Basic Med Sci. 2019;22(1):65–71.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102(31):11070–5.CrossRefGoogle Scholar
  73. 73.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027.CrossRefGoogle Scholar
  74. 74.
    Integrative H. The Integrative human microbiome project. Nature. 2019;569(7758):641.CrossRefGoogle Scholar
  75. 75.
    Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in web of science, Scopus, and Google scholar for articles published in general medical journals. Jama. 2009;302(10):1092–6.CrossRefGoogle Scholar
  76. 76.
    Mongeon P, Paul-Hus A. The journal coverage of web of science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213–28.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hossein Aazami
    • 1
    • 2
  • Hojat DehghanBanadaki
    • 1
  • Hanieh-Sadat Ejtahed
    • 3
    • 4
    Email author
  • Noushin Fahimfar
    • 5
  • Farideh Razi
    • 6
  • Ahmad-Reza Soroush
    • 3
    • 4
  • Shirin Hasani-Ranjbar
    • 3
    • 4
  • Parvin Pasalar
    • 1
  • Sara Ahmadi Badi
    • 7
    • 8
  • Seyed-Davar Siadat
    • 7
    • 8
    • 4
    Email author
  • Bagher Larijani
    • 4
  1. 1.Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  2. 2.Scientometrics Department, FarIdea CompanyTehranIran
  3. 3.Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  4. 4.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  5. 5.Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  6. 6.Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  7. 7.Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
  8. 8.Microbiology Research Center (MRC)Pasteur Institute of IranTehranIran

Personalised recommendations