Relationship between hemoglobin A1c and serum troponin in patients with diabetes and cardiovascular events

  • Stjepan Šimić
  • Tomo Svaguša
  • Ingrid Prkačin
  • Tomislav BulumEmail author
Review article



Diabetes mellitus is a group of metabolic disorders associated with high risk for cardiovascular disease. Although troponins are primarily clinically used for the diagnosis of acute coronary syndrome, they are also used in risk assessment in patients with acute coronary syndrome as well as in a number of other conditions. The aim of this review was to investigate the relationship between hemoglobin A1c and serum troponin in patients with diabetes and cardiovascular events.


Hemoglobin A1c has been chosen as the best clinical indicator of glucose control and risk of micro and macrovascular complications. We investigated cardiac troponins as a group of markers of muscle injury which includes troponin T, troponin I and troponin C. Troponin T and I are specific for myocardial injury, compared to C which is specific for skeletal muscle.


In this review, we showed that there was a causal relation between hemoglobin A1c levels and serum troponin concentrations. Hemoglobin A1c has shown to be a positive predictive factor of incidence, mortality and morbidity of conditions such as acute coronary syndrome, arrhythmias, stroke, pulmonary embolism and other conditions that causes troponin elevation by its release in circulation.


Chronic hyperglycemia decreases glomerular filtration and consequently decreases troponin elimination and also by affecting the heart microcirculation it leads to microvascular damage and consequently to ischemia which contribute to troponin concentration elevation. Furthermore, correlation between hemoglobin A1c and troponin concentration manifests in their prognostic value for mortality.


Hemoglobin A1c Troponin Diabetes mellitus Cardiovascular disease Diabetic complications 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.


  1. 1.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(1):S62–7.PubMedCentralCrossRefGoogle Scholar
  2. 2.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(1):S81–90.CrossRefGoogle Scholar
  3. 3.
    Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ma H, Gao X, Lin HD, Hu Y, Li XM, Gao J, et al. Glycated haemoglobin in diagnosis of diabetes mellitus and pre-diabetes among middle-aged and elderly population: Shanghai Changfeng study. Biomed Environ Sci. 2013;26(3):155–62.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Nathan DM, Buse JB, Davidson MB, Heine RJ, Holman RR, Sherwin R, et al. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy. A consensus statement from the American diabetes association and the European association for the study of diabetes. In: Diabetes Care. 2006. p. 1963–1972.Google Scholar
  6. 6.
    Ketema EB, Kibret KT. Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis. Arch Public Health. 2015;73:43.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Howard JA, Sommers R, Gould ON, Mancuso M. Effectiveness of an HbA1c tracking tool on primary care management of diabetes mellitus: glycaemic control, clinical practice and usability. Inform Prim Care. 2009;17(1):41–6.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. 2016;11:95–104.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Bennett CM, Guo M, Dharmage SC. HbA 1c as a screening tool for detection of type 2 diabetes: a systematic review. Diabet Med. 2007;24(4):333–43.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ang SH, Thevarajah M, Alias Y, Khor SM. Current aspects in hemoglobin A1c detection: a review. Clin Chim Acta. 2015;439:202–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Radin MS. Pitfalls in hemoglobin A1c measurement: when results may be misleading. J Gen Intern Med. 2014;29(2):388–94.PubMedCrossRefGoogle Scholar
  12. 12.
    Carr ME. Diabetes mellitus. J Diabetes Complicat. 2001;15(1):44–54.PubMedCrossRefGoogle Scholar
  13. 13.
    Rodbard HW, Blonde L, Braithwaite SS, Brett EM, Cobin RH, Handelsman Y, et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the management of diabetes mellitus. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol. 2007;13(1):1–68.Google Scholar
  14. 14.
    Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab. 2016;20(4):546–51.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini review. Curr Diabetes Rev. 2016;13(1):3–10.CrossRefGoogle Scholar
  16. 16.
    Stanton RC. Clinical challenges in diagnosis and management of diabetic kidney disease. Am J Kidney Dis. 2014;63(2):S3–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–76.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Haneda M, Utsunomiya K, Koya D, Babazono T, Moriya T, Makino H, et al. A new classification of diabetic nephropathy 2014: a report from joint committee on diabetic nephropathy. J Diabetes Investig. 2015;6(2):242–6.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Prim. 2015;1.Google Scholar
  20. 20.
    Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett. 2013;587(8):1119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhang X-X, Pan Y-H, Huang Y-M, Zhao H-L. Neuroendocrine hormone amylin in diabetes. World J Diabetes. 2016;7(9):189–97.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kohlgruber A, Lynch L. Adipose tissue inflammation in the pathogenesis of type 2 diabetes. Curr Diab Rep. 2015;15(11):92.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Snijder MB, Heine RJ, Seidell JC, Bouter LM, Stehouwer CDA, Nijpels G, et al. Associations of adiponectin levels with incident impaired glucose metabolism and type 2 diabetes in older men and women the Hoorn study. Diabetes Care. 2006;29(11):2498–503.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cox ME, Edelman D. Tests for screening and diagnosis of type 2 diabetes. Clin Diabetes. 2009;27(4):132–8.CrossRefGoogle Scholar
  25. 25.
    Harris MI, Klein R, Welborn TA, Knuiman MW. Onset of NIDDM occurs at least 4-7 yr before clinical diagnosis. Diabetes Care. 1992;15(7):815–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Bertoluci MC, Rocha VZ. Cardiovascular risk assessment in patients with diabetes. Diabetol Metab Syndr. 2017;9(1):25.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sharma S, Jackson PG, Makan J. Cardiac troponins. J Clin Pathol. 2004;57(10):1025–6.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Mythili S, Malathi N. Diagnostic markers of acute myocardial infarction. Biomed reports. 2015;3(6):743–8.CrossRefGoogle Scholar
  29. 29.
    Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res. 2017;113(14):1708–18.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Korff S, Katus HA, Giannitsis E. Differential diagnosis of elevated troponins. Heart. 2006;92(7):987–93.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ricchiuti V, Voss EM, Ney A, Odland M, Anderson PAW, Apple FS. Cardiac troponin T isoforms expressed in renal diseased skeletal muscle will not cause false-positive results by the second generation cardiac troponin T assay by Boehringer Mannheim. Clin Chem. 1998;44(9):1919–24.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Shave R, Dawson E, Whyte G, George K, Ball D, Collinson P, et al. The cardiospecificity of the third-generation cTnT assay after exercise-induced muscle damage. Med Sci Sports Exerc. 2002;34(4):651–4.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bodor GS, Porterfield D, Voss EM, Smith S, Apple FS. Cardiac troponin-I is not expressed in fetal and healthy or diseased adult human skeletal muscle tissue. Clin Chem. 1995;41(12):1710–5.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Mair J, Lindahl B, Hammarsten O, Müller C, Giannitsis E, Huber K, et al. How is cardiac troponin released from injured myocardium? Eur Heart J Acute Cardiovasc Care. 2018;7(6):553–60.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wu AHB. Cardiac markers: from enzymes to proteins, diagnosis to prognosis, laboratory to bedside. Ann Clin Lab Sci. 1999;29(1):18–23.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Collinson PO, Gaze DC, Morris F, Morris B, Price A, Goodacre S. Comparison of biomarker strategies for rapid rule out of myocardial infarction in the emergency department using ACC/ESC diagnostic criteria. Ann Clin Biochem. 2006;43(4):273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wu AHB, Valdes R, Apple FS, Gornet T, Stone MA, Mayfield-Stokes S, et al. Cardiac troponin-T immunoassay for diagnosis of acute myocardial infarction. Clin Chem. 1994;40(6):900–7.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Michielsen ECHJ, Diris JHC, Kleijnen VWVC, Wodzig WKWH, Van Dieijen-Visser MP. Investigation of release and degradation of cardiac troponin T in patients with acute myocardial infarction. Clin Biochem. 2007;40(12):851–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, Writing Group on the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction., Thygesen K, Alpert JS, White HD, Jaffe AS, Katus HA, Apple FS, Lindahl B, Morrow DA, Chaitman BA, Clemmensen PM, Johanson P, Hod H, Underwood R, Bax JJ, Bonow RO, Pinto F, Gibbons RJ, Fox KA, Atar D, Newby LK, Galvani M, Hamm CW, Uretsky BF, Steg PG, Wijns W, Bassand JP, Menasché P, Ravkilde J, Ohman EM, Antman EM, Wallentin LC, Armstrong PW, Simoons ML, Januzzi JL, Nieminen MS, Gheorghiade M, Filippatos G, Luepker RV, Fortmann SP, Rosamond WD, Levy D, Wood D, Smith SC, Hu D, Lopez-Sendon JL, Robertson RM, Weaver D, Tendera M, Bove AA, Parkhomenko AN, Vasilieva EJ, Mendis S, ESC Committee for Practice Guidelines (CPG). Third universal definition of myocardial infarction. Eur Heart J 2012; 33(20): 2551–2567.Google Scholar
  40. 40.
    Roffi M, Patrono C, Collet J-P, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Borger MA, Brotons C, Chew DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S, ESC Scientific Document Group . 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2016; 37(3): 267–315.Google Scholar
  41. 41.
    Babuin L, Jaffe AS. Troponin: The biomarker of choice for the detection of cardiac injury. Vol. 173, CMAJ. 2005. p. 1191–202.Google Scholar
  42. 42.
    Tanindi A, Cemri M. Troponin elevation in conditions other than acute coronary syndromes. Vol. 7, Vascular Health and Risk Management. 2011. p. 597–603.Google Scholar
  43. 43.
    Rubini Gimenez M, Twerenbold R, Reichlin T, Wildi K, Haaf P, Schaefer M, et al. Direct comparison of high-sensitivity-cardiac troponin I vs. T for the early diagnosis of acute myocardial infarction. Eur Heart J. 2014;35(34):2303–11.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Haaf P, Reichlin T, Twerenbold R, Hoeller R, Rubini Gimenez M, Zellweger C, et al. Risk stratification in patients with acute chest pain using three high-sensitivity cardiac troponin assays. Eur Heart J. 2014;35(6):365–75.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Panteghini M. Standardization of cardiac troponin I measurements: The way forward? Vol. 51, Clinical Chemistry. 2005. p. 1594–1597.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Giuliani I, Bertinchant JP, Granier C, Laprade M, Chocron S, Toubin G, et al. Determination of cardiac troponin I forms in the blood of patients with acute myocardial infarction and patients receiving crystalloid or cold blood cardioplegia. Clin Chem. 1999;45(2):213–22.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Fahie-Wilson MN, Carmichael DJ, Delaney MP, Stevens PE, Hall EM, Lamb EJ. Cardiac troponin T circulates in the free, intact form in patients with kidney failure. Clin Chem. 2006;52(3):414–20.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mair J. What is new on cardiac troponin degradation? J Lab Precis Med. 2017;2:55.CrossRefGoogle Scholar
  49. 49.
    Katrukha IA, Kogan AE, Vylegzhanina AV, Serebryakova MV, Koshkina EV, Bereznikova AV, et al. Thrombin-mediated degradation of human cardiac troponin T. Clin Chem. 2017;63(6):1094–100.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Fridén V, Starnberg K, Muslimovic A, Ricksten S-E, Bjurman C, Forsgard N, et al. Clearance of cardiac troponin T with and without kidney function. Clin Biochem. 2017;50(9):468–74.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Fu S, Jin R, Luo L, Ye P. Baseline type 2 diabetes had a significant association with elevated high sensitivity cardiac troponin T levels in Chinese community-dwelling population: a 5-year prospective analysis. Nutr Metab (Lond). 2017;14(1):73.CrossRefGoogle Scholar
  52. 52.
    Whelton SP, McEvoy JW, Lazo M, Coresh J, Ballantyne CM, Selvin E. High-sensitivity cardiac troponin T (hs-cTnT) as a predictor of incident diabetes in the atherosclerosis risk in communities study. Diabetes Care. 2017;40(2):261–9.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kumar A, Cannon CP. Acute coronary syndromes: diagnosis and management, part I. Mayo Clin Proc. 2009;84(10):917–38.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sanchis J, Bardají A, Bosch X, Loma-Osorio P, Marín F, Sánchez PL, et al. Usefulness of high-sensitivity troponin T for the evaluation of patients with acute chest pain and no or minimal myocardial damage. Am Heart J. 2012;164(2):194–200.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Omland T, Pfeffer MA, Solomon SD, De Lemos JA, Røsjø H, Benth JŠ, et al. Prognostic value of cardiac troponin i measured with a highly sensitive assay in patients with stable coronary artery disease. J Am Coll Cardiol. 2013;61(12):1240–9.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Sinnaeve PR, Steg PG, Fox KA, Van de Werf F, Montalescot G, Granger CB, et al. Association of elevated fasting glucose with increased short-term and 6-month mortality in ST-segment elevation and non-ST-segment elevation acute coronary syndromes: the global registry of acute coronary events. Arch Intern Med. 2009;169(4):402–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cavallini C, Savonitto S, Violini R, Arraiz G, Plebani M, Olivari Z, et al. Impact of the elevation of biochemical markers of myocardial damage on long-term mortality after percutaneous coronary intervention: results of the CK-MB and PCI study. Eur Heart J. 2005;26(15):1494–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Fang J, Alderman MH. Impact of the increasing burden of diabetes on acute myocardial infarction in New York City: 1990-2000. Diabetes. 2006;55(3):768–73.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wiviott SD, Braunwald E, Angiolillo DJ, Meisel S, Dalby AJ, Verheugt FWA, Goodman SG, Corbalan R, Purdy DA, Murphy SA, McCabe C, Antman EM, TRITON-TIMI 38 Investigators. Greater clinical benefit of more intensive oral antiplatelet therapy with prasugrel in patients with diabetes mellitus in the trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial i. Circulation. 2008; 118(16):1626–1636.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Selvin E, Marinopoulos S, Berkenblit G, Rami T, FL B, NR P, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Segre CAW, Hueb W, Garcia RMR, Rezende PC, Favarato D, Strunz CMC, et al. Troponin in diabetic patients with and without chronic coronary artery disease. BMC Cardiovasc Disord. 2015;15(1):72.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Savonitto S, Morici N, Nozza A, Cosentino F, Perrone Filardi P, Murena E, et al. Predictors of mortality in hospital survivors with type 2 diabetes mellitus and acute coronary syndromes. Diabetes Vasc Dis Res. 2018;15(1):14–23.CrossRefGoogle Scholar
  63. 63.
    Noguchi K, Sakakibara M, Asakawa N, Tokuda Y, Kamiya K, Yoshitani T, et al. Higher hemoglobin A1c after discharge is an independent predictor of adverse outcomes in patients with acute coronary syndrome– findings from the PACIFIC registry. Circ J. 2016;80(7):1607–14.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Agewall S, Giannitsis E, Jernberg T, Katus H. Troponin elevation in coronary vs. non-coronary disease. Eur Heart J. 2011;32(4):404–11.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Dubey TN, Mundada K, Arya A. Correlation of HbA1c with mortality and severity in acute coronary syndrome. Int J Contemp Med Res. 2016;3(8):2244–7.Google Scholar
  66. 66.
    Wettersten N, Maisel A. Role of cardiac troponin levels in acute heart failure. Card Fail Rev. 2015;1(2):102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Gottdiener JS, Arnold M, Aurigemma GP, Polak JF, Tracy RP, Kitzman DW, et al. Predictors of congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol. 2000;35(6):1628–37.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–84.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gerstein HC, Swedberg K, Carlsson J, McMurray JJV, Michelson EL, Olofsson B, et al. The hemoglobin A1c level as a progressive risk factor for cardiovascular death, hospitalization for heart failure, or death in patients with chronic heart failure. Arch Intern Med. 2008;168(15):1699.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zhao W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and heart failure risk among diabetic patients. J Clin Endocrinol Metab. 2014;99(2):E263–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Aguilar D, Bozkurt B, Ramasubbu K, Deswal A. Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. J Am Coll Cardiol. 2009;54(5):422–8.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pazin-Filho A, Kottgen A, Bertoni AG, Russell SD, Selvin E, Rosamond WD, et al. HbA 1c as a risk factor for heart failure in persons with diabetes: the atherosclerosis risk in communities (ARIC) study. Diabetologia. 2008;51(12):2197–204.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Tomova GS, Nimbal V, Horwich TB. Relation between hemoglobin a(1c) and outcomes in heart failure patients with and without diabetes mellitus. Am J Cardiol. 2012;109(12):1767–73.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Güder G, Gelbrich G, Edelmann F, Wachter R, Pieske B, Pankuweit S, et al. Reverse epidemiology in different stages of heart failure. Int J Cardiol. 2015;184:216–24.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. Vol. 43, Journal of the American College of Cardiology. 2004. p. 1439–1444.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Grembowski D, Ralston JD, Anderson ML. Hemoglobin A1c, comorbid conditions and all-cause mortality in older patients with diabetes: a retrospective 9-year cohort study. Diabetes Res Clin Pract. 2014;106(2):373–82.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Palta P, Huang ES, Kalyani RR, Golden SH, Yeh H-C. Hemoglobin A1c and mortality in older adults with and without diabetes: results from the National Health and nutrition examination surveys (1988–2011). Diabetes Care. 2017;40(4):453–60.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Li W, Katzmarzyk PT, Horswell R, Wang Y, Johnson J, Hu G. HbA1c and all-cause mortality risk among patients with type 2 diabetes. Int J Cardiol. 2016;202:490–6.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Zhong G-C, Ye M-X, Cheng J-H, Zhao Y, Gong J-P. HbA1c and risks of all-cause and cause-specific death in subjects without known diabetes: a dose-response meta-analysis of prospective cohort studies. Sci Rep. 2016;6:24071.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Aneja A, Tang WHW, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med. 2008;121(9):748–57.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart-deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc. 2013;2(6):e000433.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy. J Am Coll Cardiol. 2008;51(2):93–102.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Evers IM, de Valk HW, Visser GHA. Risk of complications of pregnancy in women with type 1 diabetes: nationwide prospective study in the Netherlands. BMJ. 2004;328(7445):915.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Abu-Sulaiman RM, Subaih B. Congenital heart disease in infants of diabetic mothers: echocardiographic study. Pediatr Cardiol. 2004;25(2):137–40.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Russell NE, Higgins MF, Amaruso M, Foley M, McAuliffe FM. Troponin T and pro-B-type natriuretic peptide in fetuses of type 1 diabetic mothers. Diabetes Care. 2009;32(11):2050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rasmussen AL, Lauszus FF. Umbilical pulsatility index is associated with fetalacidemia in type 1 diabetic pregnancies. Gynecol Obstet. 2013;03(03):1–3.CrossRefGoogle Scholar
  87. 87.
    Lee W-S, Kim J. Diabetic cardiomyopathy: where we are and where we are going. Korean J Intern Med. 2017;32(3):404–21.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sandhu R, Aronow WS, Rajdev A, Sukhija R, Amin H, D’aquila K, et al. Relation of cardiac troponin I levels with in-hospital mortality in patients with ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. Am J Cardiol. 2008; ;102: 632–634.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Fure B, Bruun Wyller T, Thommessen B. Electrocardiographic and troponin T changes in acute ischaemic stroke. J Intern Med. 2006;259(6):592–7.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Jensen JK, Atar D, Mickley H. Mechanism of troponin elevations in patients with acute ischemic stroke. Am J Cardiol. 2007;99(6):867–70.PubMedCrossRefGoogle Scholar
  91. 91.
    James P, Ellis CJ, Whitlock RML, McNeil AR, Henley J, Anderson NE. Relation between troponin T concentration and mortality in patients presenting with an acute stroke: observational study. Br Med J. 2000;320(7248):1502–4.CrossRefGoogle Scholar
  92. 92.
    Dixit S, Castle M, Velu RP, Swisher L, Hodge C, Jaffe AS. Cardiac involvement in patients with acute neurologic disease: confirmation with cardiac troponin I. Arch Intern Med. 2000;160(20):3153–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Faiz KW, Thommessen B, Einvik G, Omland T, Rønning OM. Prognostic value of high-sensitivity cardiac troponin T in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(2):241–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Fan Y, Jiang M, Gong D, Man C, Chen Y. Cardiac troponin for predicting all-cause mortality in patients with acute ischemic stroke: a meta-analysis. Biosci Rep. 2018;38(2):BSR20171178.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Budincevic H, Sremec J, Crnac P, Ostojic V, Galic E, Bielen I. Impact of troponin I on outcome of ischemic stroke patients. Rom J Intern Med. 2017;55(1):19–22.PubMedGoogle Scholar
  96. 96.
    Scheitz JF, Nolte CH, Laufs U, Endres M. Application and interpretation of high-sensitivity cardiac troponin assays in patients with acute ischemic stroke. Stroke. 2015;46(4):1132–40.PubMedCrossRefGoogle Scholar
  97. 97.
    Su Y-C, Huang K-F, Yang F-Y, Lin S-K Elevation of troponin I in acute ischemic stroke PeerJ 2016; 4: e1866.Google Scholar
  98. 98.
    Mitsios JP, Ekinci EI, Mitsios GP, Churilov L, Thijs V. Relationship between glycated hemoglobin and stroke risk: a systematic review and meta-analysis. J Am Heart Assoc. 2018;7(11):e007858.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hjalmarsson C, Manhem K, Bokemark L, Andersson B. The role of prestroke glycemic control on severity and outcome of acute ischemic stroke. Stroke Res Treat. 2014;2014:694569.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Sunanda T, Sampath Kumar NS, Amaresh Reddy P, Vallampalli G, PNS P. Role of HbA1c at admission on severity and functional outcome of ischemic stroke in patients with diabetes mellitus. J Neurol Neurophysiol. 2016;7(3):1–7.Google Scholar
  101. 101.
    Shin SB, Kim TU, Hyun JK, Kim JY. The prediction of clinical outcome using HbA1c in acute ischemic stroke of the deep branch of middle cerebral artery. Ann Rehabil Med. 2015;39(6):1011–7.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Jing J, Pan Y, Zhao X, Zheng H, Jia Q, Li H, et al. Prognosis of ischemic stroke with newly diagnosed diabetes mellitus according to hemoglobin A1c criteria in Chinese population. Stroke. 2016;47(8):2038–44.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Latini R, Masson S, Pirelli S, Barlera S, Pulitano G, Carbonieri E, et al. Circulating cardiovascular biomarkers in recurrent atrial fibrillation: data from the GISSI-atrial fibrillation trial. J Intern Med. 2011;269(2):160–71.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ben Yedder N, Roux JF, Paredes FA. Troponin elevation in supraventricular tachycardia: primary dependence on heart rate. Can J Cardiol. 2011;27(1):105–9.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Liu Z, Cui L, Wang Y, Guo Y. Cardiac troponin I and ventricular arrhythmia in patients with chronic heart failure. Eur J Clin Investig. 2006;36(7):466–72.CrossRefGoogle Scholar
  106. 106.
    Agarwal G, Singh SK. Arrhythmias in type 2 diabetes mellitus. Indian J Endocrinol Metab. 2017;21(5):715–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Dafaalla MD, Nimir MN, Mohammed MI, Ali OA, Hussein A. Risk factors of diabetic cardiac autonomic neuropathy in patients with type 1 diabetes mellitus: a meta-analysis. Open Hear. 2016;3(2):e000336.CrossRefGoogle Scholar
  108. 108.
    Christiansen CB, Gerds TA, Olesen JB, Kristensen SL, Lamberts M, Lip GYH, et al. Atrial fibrillation and risk of stroke: a nationwide cohort study. Europace. 2016;18(11):1689–97.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ruddox V, Sandven I, Munkhaugen J, Skattebu J, Edvardsen T, Otterstad JE. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: a systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24(14):1555–66.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Huisman MV, Barco S, Cannegieter SC, Le Gal G, Konstantinides SV, Reitsma PH, et al. Pulmonary embolism. Nat Rev Dis Prim. 2018;4:18028.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Movahed M-R, Hashemzadeh M, Jamal MM. The prevalence of pulmonary embolism and pulmonary hypertension in patients with type II diabetes mellitus. Chest. 2005;128(5):3568–71.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Lualdi JC, Goldhaber SZ. Right ventricular dysfunction after acute pulmonary embolism: pathophysiologic factors, detection, and therapeutic implications. Am Heart J. 1995;130(6):1276–82.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Meyer T, Binder L, Hruska N, Luthe H, Buchwald AB. Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction. J Am Coll Cardiol. 2000;36(5):1632–6.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kucher N, Rossi E, De Rosa M, Goldhaber SZ. Prognostic role of echocardiography among patients with acute pulmonary embolism and a systolic arterial pressure of 90 mm hg or higher. Arch Intern Med. 2005;165(15):1777–81.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Lerstad G, Brodin EE, Enga KF, Jorde R, Schirmer H, Njølstad I, et al. Hyperglycemia, assessed according to HbA 1c, and future risk of venous thromboembolism: the Tromsø study. J Thromb Haemost. 2014;12(3):313–9.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Bell EJ, Selvin E, Lutsey PL, Nambi V, Cushman M, Folsom AR. Glycemia (hemoglobin A1c) and incident venous thromboembolism in the atherosclerosis risk in communities cohort study. Vasc Med. 2013;18(5):245–50.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lemkes BA, Hermanides J, Devries JH, Holleman F, Meijers JC, Hoekstra JB. Hyperglycemia: a prothrombotic factor? J Thromb Haemost. 2010;8(8):1663–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Wu AHB. Release of cardiac troponin from healthy and damaged myocardium. Front Lab Med. 2017;1(3):144–50.CrossRefGoogle Scholar
  119. 119.
    Ostermann M, Ayis S, Tuddenham E, Lo J, Lei K, Smith J, et al. Cardiac troponin release is associated with biomarkers of inflammation and ventricular dilatation during critical illness. Shock. 2017;47(6):702–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ammann P, Fehr T, Minder E, Günter C, Bertel O. Elevation of troponin I in sepsis and septic shock. Intensive Care Med. 2001;27(6):965–9.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Bessière F, Khenifer S, Dubourg J, Durieu I, Lega J-C. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013;39(7):1181–9.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Alhamdi Y, Abrams ST, Cheng Z, Jing S, Su D, Liu Z, et al. Circulating histones are major mediators of cardiac injury in patients with sepsis. Crit Care Med. 2015;43(10):2094–103.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Hunter JD, Doddi M. Sepsis and the heart. Br J Anaesth. 2010;104(1):3–11.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Frydrych LM, Fattahi F, He K, Ward PA, Delano MJ. Diabetes and sepsis: risk, recurrence, and ruination. Front Endocrinol (Lausanne). 2017;8:271.CrossRefGoogle Scholar
  125. 125.
    Vallabhajosyula S, Sakhuja A, Geske JB, Kumar M, Poterucha JT, Kashyap R, et al. Role of admission troponin-T and serial troponin-T testing in predicting outcomes in severe sepsis and septic shock. J Am Heart Assoc. 2017;6(9):e005930.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Moskowitz A, Omar Y, Chase M, Lokhandwala S, Patel P, Andersen LW, et al. Reasons for death in patients with sepsis and septic shock. J Crit Care. 2017;38:284–8.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Gornik I, Gornik O, Gašparović V. HbA1c is outcome predictor in diabetic patients with sepsis. Diabetes Res Clin Pract. 2007;77(1):120–5.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Small M, Lowe GD, MacCuish AC, Forbes CD. Thrombin and plasmin activity in diabetes mellitus and their association with glycaemic control. Q J Med. 1987;65(248):1025–31.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Zhao Y, Zhang J, Zhang J, Wu J. Diabetes mellitus is associated with shortened activated partial thromboplastin time and increased fibrinogen values. PLoS One. 2011;6(1):e16470.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Tripodi A, Branchi A, Chantarangkul V, Clerici M, Merati G, Artoni A, et al. Hypercoagulability in patients with type 2 diabetes mellitus detected by a thrombin generation assay. J Thromb Thrombolysis. 2011;31(2):165–72.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Tripodi A. Thrombin generation assay and its application in the clinical laboratory. Clin Chem. 2016;62(5):699–707.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Bulum T, Duvnjak L. Insulin resistance in patients with type 1 diabetes: relationship with metabolic and inflammatory parameters. Acta Clinica Croatica. 2013;52:43–51.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Nikiforov NG, Galstyan KO, Nedosugova LV, Elizova NV, Kolmychkova KI, Ivanova EA. Proinflammatory monocyte polarization in type 2 diabetes mellitus and coronary heart disease. Vessel Plus. 2017;1:192–5.Google Scholar
  135. 135.
    Parameswaran N, Patial S. Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr. 2010;20(2):87–103.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lachmandas E, Vrieling F, Wilson LG, Joosten SA, Netea MG, Ottenhoff TH, et al. The effect of hyperglycaemia on in vitro cytokine production and macrophage infection with mycobacterium tuberculosis. PLoS One. 2015;10(2):e0117941.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Devaraj S, Jialal I, Yun J-M, Bremer A. Demonstration of increased toll-like receptor 2 and toll-like receptor 4 expression in monocytes of type 1 diabetes mellitus patients with microvascular complications. Metabolism. 2011;60(2):256–9.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Choi SH, Kim JH, Lim S, Lim JY, Kim KW, Park KS, et al. Monocyte count as a predictor of cardiovascular mortality in older Korean people. Age Ageing. 2017;46(3):433–8.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Villarreal-Molina MT, Antuna-Puente B. Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie. 2012;94(10):2143–9.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Kawano J, Arora R. The role of adiponectin in obesity, diabetes, and cardiovascular disease. J Cardiometab Syndr. 2009;4(1):44–9.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Ekmekci H, Ekmekci OB. The role of adiponectin in atherosclerosis and thrombosis. Clin Appl Thromb Hemost. 2006;12(2):163–8.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Schulze MB, Rimm EB, Shai I, Rifai N, Hu FB. Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes 2004; 27(7): 1680-1687.Google Scholar
  143. 143.
    Ammal EI, Dhafer El-Yassin H, Kareem Sachit Al-Janabi H. The association between adiponectin, insulin and troponin I in patients with acute myocardial infarction. Journal of Al-Nahrain University. 2012;15(3):15–22.CrossRefGoogle Scholar
  144. 144.
    Group TAC. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.CrossRefGoogle Scholar
  145. 145.
    Prabhu S, Pawade Y, Dhamnaskar R, Karamchandani R. Association of HbA1c with kidney dysfunction in diabetes mellitus and cardiovascular diseases. Vol. 9. People’s Journal of Scientific Research. 2016;9(2):1–6.Google Scholar
  146. 146.
    Goderis G, Van Pottelbergh G, Truyers C, Van Casteren V, De Clercq E, Van Den Broeke C, et al. Long-term evolution of renal function in patients with type 2 diabetes mellitus: a registry-based retrospective cohort study. BMJ Open. 2013;3(12):e004029.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Yokoyama H, Kanno S, Takahashi S, Yamada D, Itoh H, Saito K, et al. Determinants of decline in glomerular filtration rate in nonproteinuric subjects with or withoutd iabetes and hypertension. Clin J Am Soc Nephrol. 2009;4(9):1432–40.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Kuo I-C, Lin HY-H, Niu S-W, Hwang D-Y, Lee J-J, Tsai J-C, et al. Glycated hemoglobin and outcomes in patients with advanced diabetic chronic kidney disease. Sci Rep. 2016;6(1):20028.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Oh SW, Kim YC, Koo HS, Jin DC, Na KY, Chae DW, et al. Glycated haemoglobin and the incidence of end-stage renal disease in diabetics. Nephrol Dial Transplant. 2011;26(7):2238–44.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Shurraw S, Hemmelgarn B, Lin M, Majumdar SR, Klarenbach S, Manns B, Bello A, James M, Turin TC, Tonelli M, Alberta Kidney Disease Network. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease. Arch Intern Med 2011;171(21):1920, 1927.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Moen MF, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(6):1121–7.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Snyder RW, Berns JS. Use of insulin and oral hypoglycemic medications in patients with diabetes mellitus and advanced kidney disease. Semin Dial. 2004;17(5):365–70.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Biesenbach G, Raml A, Schmeckle B, Eichbauer-Sturm G. Decreased insulin requirement in relation to GFR in nephropathic type 1 and insulin-treated type 2 diabetic patients. Diabet Med. 2003;20(8):642–5.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Kalantar-Zadeh K, Kopple JD, Regidor DL, Jing J, Shinaberger CS, Aronovitz J, et al. A1C and survival in maintenance hemodialysis patients. Diabetes Care. 2007;30(5):1049–55.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Michos ED, Wilson LM, Yeh H-C, Berger Z, Suarez-Cuervo C, Stacy SR, et al. Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome. Ann Intern Med. 2014;161(7):491–501.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Pálsson R, Patel UD. Cardiovascular complications of diabetic kidney disease. Adv Chronic Kidney Dis. 2014;21(3):273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Astor BC, Hallan SI, Miller ER, Yeung E, Coresh J. Glomerular filtration rate, albuminuria, and risk of cardiovascular and all-cause mortality in the US population. Am J Epidemiol. 2008;167(10):1226–34.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Bello AK, Hemmelgarn B, Lloyd A, James MT, Manns BJ, Klarenbach S, Tonelli M, Alberta Kidney Disease Network. Associations among estimated glomerular filtration rate, proteinuria, and adverse cardiovascular outcomes. Clin J Am Soc Nephrol 2011; 6(6):1418–1426.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Pervan P, Svaguša T, Prkačin I, Vuković J, Radeljak A, Perkov S. Urine concentrations of high-sensitivity cardiac troponin I in healthy adults-preliminary reference intervals. Acta Medica Croat. 2018;72:461–5.Google Scholar
  160. 160.
    Svaguša T, Golub A, Pikivaca T, Savuk A, Perkov S, Jureković Ž, et al. High sensitive troponin concentration stability in dialysate of anuric patients on hemodialysis. Signa Vitae. 2018;14(1):35–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stjepan Šimić
    • 1
  • Tomo Svaguša
    • 1
    • 2
  • Ingrid Prkačin
    • 1
    • 3
  • Tomislav Bulum
    • 1
    • 4
    Email author
  1. 1.School of MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Department of Internal MedicineDubrava University HospitalZagrebCroatia
  3. 3.Department of Internal MedicineMerkur University HospitalZagrebCroatia
  4. 4.Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic DiseasesMerkur University HospitalZagrebCroatia

Personalised recommendations