Skip to main content

Advertisement

Log in

Synthesis and biological evaluation of RGD conjugated with Ketoprofen/Naproxen and radiolabeled with [99mTc] via N4(GGAG) for αVβ3 integrin-targeted drug delivery

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Integrins are interesting targets in oncology. RGD sequence has high affinity for αVβ3 integrin receptors. Diagnostic/therapeutic agents can be selectively delivered into cancer cells overexpressing αVβ3 integrin by using RGD as a carrier. Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown anticancer properties in in vitro and in vivo studies. The anti-cancer properties of NSAIDs occur though COX-2 inhibition. Regarding the anti-cancer properties of NSAIDs and overexpression of COX-2 enzyme in cancer cells, targeted delivery of NSAIDs into cancer cells to maximize their efficiency and minimize their side effects may gain increased clinical interest.

Objectives

In this study, RGD was conjugated to ketoprofen/Naproxen to selectively transfer these non-selective COX inhibitors into cancer cells.

Methods

Keto/Nap-RGD-N4 peptides were synthesized based on solid phase fmoc peptide synthesis. Radiolabeling with [99mTc] via N4 (GGAG) ligand was done for biological evaluation. Affinity and specificity of Keto/Nap-RGD-N4 to integrin was determined using A2780, OVCAR-3, SKOV-3 and HT-1080 cell lines. Percentage of Intenalization was measured in A2780 cells. Biodistriburion was studied in normal and tumor model mice.

Results

Radiolabeled compounds showed high affinity to cells expressing αVβ3 integrin in comparison to cells not expressing αVβ3. The affinity to A2780 was significantly higher than OVCAR-3 cells. The %internalization into A2780 cells was quite low. Compounds showed more than 50% inhibition on A2780 and OVCAR-3 cells, less than 10% on MCF-7 and HT-1080 cells and no cytotoxicity on fibroblast cells after 48 h incubation. Although uptake of radiolabeled compounds in tumor was high at 1 h post-injection, the tumor/blood ratio was less than 1.5 which made SPECT imaging impossible.

Conclusion

Provided that NSAID drugs are conjugated to RGD, there will be a selective delivery to target tissues as well as synergetic anti-tumor effects which reduce systemic doses and toxicity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Soudy R, Chen C, Kaur K. Novel peptide–Doxorubucin conjugates for targeting breast Cancer cells including the multidrug resistant cells. J Med Chem. 2013;56(19):7564–73.

    Article  CAS  PubMed  Google Scholar 

  2. Dal Pozzo A, Ni M-H, Esposito E, Dallavalle S, Musso L, Bargiotti A, et al. Novel tumor-targeted RGD peptide–Camptothecin conjugates: synthesis and biological evaluation. Bioorg Med Chem. 2010;18(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Plasencia C, Hou Y, Neamati N. Synthesis and Biological Evaluation of Dimeric RGD Peptide−Paclitaxel Conjugate as a Model for Integrin-Targeted Drug Delivery. J Med Chem. 2005;48(4):1098–106.

    Article  CAS  PubMed  Google Scholar 

  4. Le Joncour V, Laakkonen P. Seek & Destroy , Use of Targeting Peptides for Cancer Detection and Drug Delivery. Bioorg Med Chem. 2018;26(10):2797–806.

    Article  PubMed  Google Scholar 

  5. Haubner R, Finsinger D, Kessler H. Stereoisomeric peptide libraries and Peptidomimetics for designing selective inhibitors of Theαvβ3 integrin for a new Cancer therapy. Angew Chem Int Ed Eng. 1997;36(1314):1374–89.

    Article  CAS  Google Scholar 

  6. Rüegg, C.; Dormond, O.; Mariotti, A. Endothelial Cell Integrins and COX-2: Mediators and Therapeutic Targets of Tumor Angiogenesis. Biochimica et Biophysica Acta - Reviews on Cancer. 2004; pp 51–67.

  7. Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) Beta(3) integrin in Cancer therapy and diagnosis. Mol Pharm. 2012;9(11):2961–73.

    Article  CAS  PubMed  Google Scholar 

  8. Posey JA, Khazaeli MB, DelGrosso A, Saleh MN, Lin CY, Huse W, et al. A Pilot Trial of Vitaxin, A Humanized Anti-Vitronectin Receptor (Anti αvβ3 ) Antibody in Patients with Metastatic Cancer. Cancer Biother Radiopharm. 2001;16(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  9. Gaertner FC, Kessler H, Wester H-J, Schwaiger M, Beer AJ. Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging. 2012;39(S1):126–38.

    Article  CAS  Google Scholar 

  10. Jin S, Wang Y, Zhu H, Wang Y, Zhao S, Zhao M, et al. Nanosized Aspirin-Arg-Gly-Asp-Val: delivery of aspirin to Thrombus by the target carrier Arg-Gly-Asp-Val Tetrapeptide. ACS Nano. 2013;7(9):7664–73.

    Article  CAS  PubMed  Google Scholar 

  11. Colombo R, Mingozzi M, Belvisi L, Arosio D, Piarulli U, Carenini N, et al. Synthesis and biological evaluation (in vitro and in vivo) of cyclic arginine–Glycine–aspartate (RGD) Peptidomimetic–paclitaxel conjugates targeting integrin α V β 3. J Med Chem. 2012;55(23):10460–74.

    Article  CAS  PubMed  Google Scholar 

  12. Dormond O, Foletti A, Paroz C, Rüegg C. NSAIDs inhibit ΑVβ3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med. 2001;7(9):1041–7.

    Article  CAS  PubMed  Google Scholar 

  13. Rayburn ER, Ezell SJ, Zhang R. Anti-inflammatory agents for Cancer therapy. Mol Cell Pharmacol. 2009;1(1):29–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shiff SJ, Shivaprasad P, Santini DL. Cyclooxygenase inhibitors: drugs for Cancer prevention. Curr Opin Pharmacol. 2003;3(4):352–61.

    Article  CAS  PubMed  Google Scholar 

  15. Liu S, Edwards DS. 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev. 1999;99(9):2235–68.

    Article  CAS  PubMed  Google Scholar 

  16. Yapp DTT, Ferreira CL, Gill RK, Boros E, Wong MQ, Mandel D, et al. Imaging tumor vasculature noninvasively with positron emission tomography and RGD peptides labeled with copper 64 using the Bifunctonal chelates DOTA, Oxo-DO3a. and PCTA. Mol. Imaging. 2013;12(4):263–72.

    CAS  Google Scholar 

  17. Yoshimoto M, Ogawa K, Washiyama K, Shikano N, Mori H, Amano R, et al. α v β 3 integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer. 2008;123(3):709–15.

    Article  CAS  PubMed  Google Scholar 

  18. Dijkgraaf I, Yim C-B, Franssen GM, Schuit RC, Luurtsema G, Liu S, et al. PET imaging of Αvβ3 integrin expression in Tumours with 68Ga-Labelled Mono-, Di- and Tetrameric RGD peptides. Eur J Nucl Med Mol Imaging. 2011;38(1):128–37.

    Article  CAS  PubMed  Google Scholar 

  19. Tsiapa I, Loudos G, Varvarigou A, Fragogeorgi E, Psimadas D, Tsotakos T, et al. Biological evaluation of an ornithine-modified 99mTc-labeled RGD peptide as an angiogenesis imaging agent. Nucl Med Biol. 2013;40(2):262–72.

    Article  CAS  PubMed  Google Scholar 

  20. Stewart, John Morrow, Young, J. D. Solid Phase Peptide Synthesis; 1984.

  21. Rezaeianpour S, Bozorgi AH, Moghimi A, Almasi A, Balalaie S, Ramezanpour S, et al. Synthesis and biological evaluation of cyclic [99mTc]-HYNIC-CGPRPPC as a fibrin-binding peptide for molecular imaging of thrombosis and its comparison with [99mTc]-HYNIC-GPRPP. Mol Imaging Biol. 2017;19(2):256–64.

    Article  CAS  PubMed  Google Scholar 

  22. Khoshbakht S, Tabib K, Soraya Shahhosseini B, Shahhosseini S, Kobarfard F, Beiki D, et al. HYNIC a Bifunctional prosthetic Group for the Labelling of peptides with 99m Tc and 18 FDG. J Radioanal Nucl Chem. 2016;307:1125–34.

    Article  CAS  Google Scholar 

  23. Khoshbakht S, Beiki D, Geramifar P, Kobarfard F, Sabzevari O, Amini M, et al. 18FDG-Labeled LIKKPF: A PET Tracer for Apoptosis Imaging. J Radioanal Nucl Chem. 2016;310(1).

  24. Shokri B, Zarghi A, Shahhoseini S, Mohammadi R, Kobarfard F. Design, synthesis and biological evaluation of Ketoprofen conjugated to RGD/NGR for targeted Cancer therapy. Iran J Pharm Res IJPR. 2018;17(4):1297–305.

    CAS  PubMed  Google Scholar 

  25. Zarghi A, Ghodsi R. Design, synthesis, and biological evaluation of Ketoprofen analogs as potent Cyclooxygenase-2 inhibitors. Bioorg Med Chem. 2010;18(16):5855–60.

    Article  CAS  PubMed  Google Scholar 

  26. Shokri B, Zarghi A, Shahhoseini S, Mohammadi R, Kobarfard F. Design, Synthesis and Biological Evaluation of Peptide-NSAID Conjugates for Targeted Cancer Therapy. Arch Pharm (Weinheim). 2019;352(8):1800379.

    Article  Google Scholar 

  27. Liu S. Radiolabeled Multimeric cyclic RGD peptides as integrin α v β 3 targeted radiotracers for tumor imaging. Mol Pharm. 2006;3(5):472–87.

    Article  CAS  PubMed  Google Scholar 

  28. Knetsch PA, Zhai C, Rangger C, Blatzer M, Haas H, Kaeopookum P, et al. [(68)Ga]FSC-(RGD)3 a Trimeric RGD peptide for imaging Αvβ3 integrin expression based on a novel Siderophore derived chelating scaffold-synthesis and evaluation. Nucl Med Biol. 2015;42(2):115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao Z-Q, Yang Y, Fang W, Liu S. Comparison of biological properties of 99mTc-labeled cyclic RGD peptide Trimer and dimer useful as SPECT radiotracers for tumor imaging. Nucl Med Biol. 2016;43(11):661–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Shahid Beheshti University of Medical Sciences, Tehan, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Afshin Zarghi or Soraya Shahhosseini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, R., Shokri, B., Shamshirian, D. et al. Synthesis and biological evaluation of RGD conjugated with Ketoprofen/Naproxen and radiolabeled with [99mTc] via N4(GGAG) for αVβ3 integrin-targeted drug delivery. DARU J Pharm Sci 28, 87–96 (2020). https://doi.org/10.1007/s40199-019-00318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00318-8

Keywords

Navigation