Binding of Pb-Melatonin and Pb-(Melatonin-metabolites) complexes with DMT1 and ZIP8: implications for lead detoxification

  • Tayde Villaseñor-Granados
  • Erik Díaz-Cervantes
  • Karla J. Soto-Arredondo
  • Minerva Martínez-Alfaro
  • Juvencio Robles
  • Marco A. García-RevillaEmail author
Research Article


We have applied the docking methodology to characterize the binding modes of the divalent metal transporter 1 (DMT1) and the zinc transporter 8 (ZIP8) protein channels with: melatonin, some melatonin metabolites, and a few lead complexes of melatonin and its metabolites, in three different coordination modes (mono-coordinated, bi-coordinated and tri-coordinated). Our results show that bi-coordinated and tri-coordinated lead complexes prefer to bind inside the central region of ZIP8. Moreover, the interaction strength is larger compared with that of the free melatonin and melatonin metabolites. On the other hand, the binding modes with DMT1 of such complexes display lower binding energies, compared with the free melatonin and melatonin metabolites. Our results suggest that ZIP8 plays a major role in the translocation of Pb, bi or tri coordinated, when melatonin metabolites are present. Finally, we have characterized the binding modes responsible for the ZIP8 large affinities, found in bi-coordinated and tri-coordinated lead complexes. Our results show that such interactions are greater, because of an increase of the number of hydrogen bonds, the number and intensity of electrostatic interactions, and the interaction overlay degree in each binding mode. Our results give insight into the importance of the ZIP8 channel on lead transport and a possible elimination mechanism in lead detoxification processes.

Graphical abstract



Lead poisoning Melatonin AFMK AMK kynuramine cpd CHMI Molecular docking simulation DMT-1 transporter Zinc transporter ZIP8 



National Laboratory UG-UAA-CONACyT (123732) is acknowledged for computing resources. Authors are thankful to DAIP-Universidad de Guanajuato (“Convocatoria Institucional de Apoyo a la Investigación Científica 2016-2017”, for funding through project No. 736/2016) and PRODEP (SEP-México) for financial support.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

40199_2019_256_MOESM1_ESM.docx (8.1 mb)
ESM 1 (DOCX 8299 kb)


  1. 1.
    O'Connor D, Hou D, Ye J, Zhang Y, Ok YS, Song Y, et al. Lead-based paint remains a major public health concern: a critical review of global production, trade, use, exposure, health risk, and implications. Environ Int. 2018;121(Pt 1):85–101.CrossRefGoogle Scholar
  2. 2.
    Ericson B, Landrigan P, Taylor MP, Frostad J, Caravanos J, Keith J, et al. The global burden of Lead toxicity attributable to informal used Lead-acid battery sites. Ann Glob Health. 2016;82(5):686–99.CrossRefGoogle Scholar
  3. 3.
    World Health Organization web page Accessed Jan 2018.
  4. 4.
    Kello D, Kostial K. The effect of Milk diet on Lead metabolism in rats. Environ Res. 1973;6:355–60.CrossRefGoogle Scholar
  5. 5.
    Hilburn ME. Environmental Lead in perspective. Chem Soc Rev. 1979;8:63–84.CrossRefGoogle Scholar
  6. 6.
    Blair J, Coleman I, Hilburn M. The transport of Lead cation across the intestinal membrane. J Physiol. 1979;286:343–50.CrossRefGoogle Scholar
  7. 7.
    Six K, Goyer R. Experimental enhancement of Lead toxicity by low dietary calcium. J Lab Clin Med. 1970;76:933–42.Google Scholar
  8. 8.
    Sears ME. Chelation: harnessing and enhancing heavy metal detoxification—a review. Sci World J. 2013;18:219840.Google Scholar
  9. 9.
    Hoseob L, Kim H, Chang H, Yoon M, Lee K, Choi J. Vitamin C modulates Lead excretion in rats. Anat Cell Biol. 2013;46:239–45.CrossRefGoogle Scholar
  10. 10.
    Hernández-Plata E, Quiroz-Compeán F, Ramírez-García G, Yáñez-Barrientos E, Rodríguez-Morales NM, Flores A, et al. Melatonin reduces Lead levels in blood, brain and bone and increases Lead excretion in rats subjected to subacute Lead Treatmet. Toxicol Lett. 2015;233:78–83.CrossRefGoogle Scholar
  11. 11.
    Anttila A. International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans, vol. 87. Lyon-France: Inorganic and Organic Lead Compounds; 2006.Google Scholar
  12. 12.
    Limson J, Nyokong T, Daya S. The interaction of melatonin and its precursors with Aluminium, cadmium copper, Iron, Lead, and zinc: and adsorptive Voltammetric study. J Pineal Res. 1998;24:15–21.CrossRefGoogle Scholar
  13. 13.
    Kim TK, Kleszczyn K, Janjetovic Z, Sweatman T, Lin Z, Li W, et al. Metabolism of melatonin and biological activity of intermediates of Metaloninergic pathway in human skin cells. FASEB J. 2013;27:2742–55.CrossRefGoogle Scholar
  14. 14.
    Kim TK, Lin Z, Li W, Reiter RJ, Slominski AT. N1-Acetyl-5-Methoxykynuramine (AMK) is produced in the human epidermis and shows Antiproliferative effects. Endocrinol. 2015;156:1630–6.CrossRefGoogle Scholar
  15. 15.
    Martin-Renedo J, Mauriz JL, Jorquera F, Ruiz-Andres O, Gonzalez P, Gonzalez-Gallego J. Melatonin induces cell cycle arrest and apoptosis in Hepatocarcinoma HepG2 cell line. J Pineal Res. 2008;45:532–40.CrossRefGoogle Scholar
  16. 16.
    Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80:1844–52.CrossRefGoogle Scholar
  17. 17.
    Lee IC, Kim SH, Lee SM, Baek HS, Moon C, Kim SH, et al. Melatonin attenuates gentamicin-induced nephrotoxicity and oxidative stress in rats. Arch Toxicol. 2012;86:1527–36.CrossRefGoogle Scholar
  18. 18.
    Lee KM, Lee IC, Kim SH, Moon C, Park SH, Shin DH, et al. Melatonin attenuates doxorubicin-induced testicular toxicity in rats. Andrologia. 2012;44:796–803.CrossRefGoogle Scholar
  19. 19.
    Jang SS, Kim WD, Park WY. Melatonin exerts differential actions on X-ray radiation-induced apoptosis in Normal mice Splenocytes and Jurkat leukemia cells. J Pineal Res. 2009;47:147–55.CrossRefGoogle Scholar
  20. 20.
    Zhou H, Chen J, Lu X, Shen C, Zeng J, Chen L, et al. Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in Hela cells. J Pineal Res. 2012;52:120–7.CrossRefGoogle Scholar
  21. 21.
    Aranda M, Albendea CD, Lostale F, Lopez-Pingarron L, Fuentes-Broto L, Martinez-Ballarin E, et al. In vivo hepatic oxidative stress because of carbon tetrachloride toxicity: protection by melatonin and Pinoline. J Pineal Res. 2010;49:78–85.Google Scholar
  22. 22.
    Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51(1):1–16.CrossRefGoogle Scholar
  23. 23.
    Gulcin I, Buyukokuroglu ME, Kufrevioglu OI. Metal chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res. 2003;34(4):278–81.CrossRefGoogle Scholar
  24. 24.
    Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–42.CrossRefGoogle Scholar
  25. 25.
    Galano A, Medina ME, Tan DX, Reiter JJ. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res. 2015;58:107–16.CrossRefGoogle Scholar
  26. 26.
    Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res. 2018;65:e12514.CrossRefGoogle Scholar
  27. 27.
    Díaz-Cervantes E, García-Revilla MA, Soto-Arredondo K, Villaseñor-Granados T, Martínez-Alfaro M, Robles J. Computational study of some metal complexes that may form with endogenous metals and in Lead intoxication treated with EDTA, melatonin and its Main metabolites. J Mol Model. 2019;25:18.CrossRefGoogle Scholar
  28. 28.
    Barbier O, Jaquillet G, Tauc M, Cougnon M, Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005;99:105–10.CrossRefGoogle Scholar
  29. 29.
    Gachot B, Tauc M, Morat L, Poujeol P. Zinc uptake by proximal cells isolated from rabbit kidney: effects of cysteine and histidine. Pflugers Arch. 1991;419:583–7.CrossRefGoogle Scholar
  30. 30.
    Nebert DW, Gálvez-Peralta M, Hay EB, Li H, Johansson E, Yin C, et al. ZIP14 and ZIP8 zinc/bicarbonate symporters in Xenopus oocytes: characterization of metal uptake and inhibition. Metallomics. 2012;4:1218–25.CrossRefGoogle Scholar
  31. 31.
    Lui Z, Li H, Soleimani M, Girijashanker K, Reed JM, He L, et al. Cd2+ versus Zn2+ uptake by the ZIP8 HCO3—dependent symporter: kinetics, Electrogenicity and trafficking. Biochem Biophys Res Commun. 2007;365:814–20.Google Scholar
  32. 32.
    Wang Q, Luo W, Zhang W, Lui M, Song H, Chen J. Involvement of DMT1 +IRE in the transport of Lead in an in vitro BBB model. Toxicol in Vitro. 2011;25:991–8.CrossRefGoogle Scholar
  33. 33.
    An DZ, Ai JT, Fang HJ, Sun RB, Shi Y, Wang LL, et al. Influence of Iron supplementation on DMT1 (IRE)-induced transport of Lead by brain barrier systems in vivo. Biomed Environ Sci. 2015;28:651–9.Google Scholar
  34. 34.
    Meng XY, Zhang HX, Mezei M, Cui M. Moleular docking: Apowerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7:146–57.CrossRefGoogle Scholar
  35. 35.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Baht TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42.CrossRefGoogle Scholar
  36. 36.
    Sander C, Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins Struct Funct Genet. 1991;9:56–68.CrossRefGoogle Scholar
  37. 37.
    Blundell TL, Sibanda BL, Sternberg MJE, Thornton JM. Knowledge-based prediction of protein structures and the Design of Novel Molecules. Nature. 1987;326:347–52.CrossRefGoogle Scholar
  38. 38.
    Nicklaus MC, Wang S, Driscoll JS, Milne GW. Conformational changes of small molecules binding to proteins. Bioorg Med Chem. 1995;3:411–28.CrossRefGoogle Scholar
  39. 39.
    Oprea TI. Property distribution of drug-related chemical databases. J Comput Aided Mol Des. 2000;14:251–64.CrossRefGoogle Scholar
  40. 40.
    Yang Z. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40–8.CrossRefGoogle Scholar
  41. 41.
    Ambrish R, Alper K, Yang Z. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725–38.CrossRefGoogle Scholar
  42. 42.
    Ambrish R, Jianyi Y, Yang Z. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012;40:W471–7.CrossRefGoogle Scholar
  43. 43.
    Molegro Aps (2011) M.V.D., version 2011.5.0, Accessed Jan 2018.
  44. 44.
    Gehlhaar DK, Verkhivker G, Rejto PA, Fogel DB, Fogel LJ, Fogel LJ, Freer ST (1995) Docking conformationally flexible small molecules into a protein binding site through evolutionary programming. Proceedings of the Fourth International Conference on Evolutionary Programming 615-627.Google Scholar
  45. 45.
    Gehlhaar DK, Bouzida D, Rejto PA (1998) Fully automated and rapid flexible docking of inhibitors covalently bounded to serine proteases. Proceedings of the Seventh International Conference on Evolutionary Programming 449-461.Google Scholar
  46. 46.
    Yang JM, Chen CC. GEMDOCK: a generic evolutionary method for molecular docking. Proteins. 2004;55:288–304.CrossRefGoogle Scholar
  47. 47.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, et al. Chemistry with ADF. J Comput Chem. 2001;22:931–67.CrossRefGoogle Scholar
  48. 48.
    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ. Towards an order-N DFT method. Theor Chem Accounts. 1998;99:391–403.Google Scholar
  49. 49.
    ADF2016, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, Accessed Jan 2018.
  50. 50.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–38.CrossRefGoogle Scholar
  51. 51.
    van Lenthe E, Baerends EJ. Optimized slater-type basis sets for the elements 1-118. J Comput Chem. 2003;24:1142–56.CrossRefGoogle Scholar
  52. 52.
    Pye CC, Ziegler T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor Chem Accounts. 1999;101:396–408.CrossRefGoogle Scholar
  53. 53.
    van Lenthe E, Baerends EJ, Snijders JG. Relativistic regular two-component Hamiltonians. J Chem Phys. 1993;99:4597–610.CrossRefGoogle Scholar
  54. 54.
    van Lenthe E, Baerends EJ, Snijders JG. Relativistic Total energy using regular approximations. J Chem Phys. 1994;101:9783–92.CrossRefGoogle Scholar
  55. 55.
    van Lenthe E, Ehlers AE, Baerends EJ. Geometry optimization in the zero order regular approximation for relativistic effects. J Chem Phys. 1999;110:8943–53.CrossRefGoogle Scholar
  56. 56.
    Wiederstein M, Sippl MJ. ProSA-web: interactive web Service for the Recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:407–10.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de QuímicaCentro de Investigaciones y de Estudios Avanzados del Instituto Politécnico NacionalCiudad de MéxicoMexico
  2. 2.Departamento de Farmacia, División de Ciencias Naturales y ExactasUniversidad de GuanajuatoGuanajuato, Gto.Mexico
  3. 3.Departamento de Alimentos, Centro Interdisciplinario del Noreste (CINUG)Universidad de GuanajuatoGuanajuatoMexico
  4. 4.Departamento de Química, División de Ciencias Naturales y ExactasUniversidad de GuanajuatoGuanajuatoMexico

Personalised recommendations