Adsorption and in vitro release study of curcumin form polyethyleneglycol functionalized multi walled carbon nanotube: kinetic and isotherm study

  • Somayeh Koupaei Malek
  • Mohammad Ali Gabris
  • Binta Hadi Jume
  • Raheleh Baradaran
  • Madzlan Aziz
  • Khairil Juhanni Bt. Abd Karim
  • Hamid Rashidi NodehEmail author
Research Article


Polyethylene glycol functionalized with oxygenated multi-walled carbon nanotubes (O-PEG-MWCNTs) as an efficient nanomaterial for the in vitro adsorption/release of curcumin (CUR) anticancer agent. The synthesized material was morphologically characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and transmission electron microscopy. In addition, the CUR adsorption process was assessed with kinetic and isotherm models fitting well with pseudo-second order and Langmuir isotherms. The results showed that the proposed O-PEG-MWCNTs has a high adsorption capacity for CUR (2.0 × 103 mg/g) based on the Langmuir model. The in vitro release of CUR from O-PEG-MWCNTs was studied in simulating human body fluids with different pHs (ABS pH 5, intestinal fluid pH 6.6 and body fluid pH 7.4). Lastly, to confirm the success compliance of the O-PEG-MWCNT nanocomposite as a drug delivery system, the parameters affecting the CUR release such as temperature and PEG content were investigated. As a result, the proposed nanocomposite could be used as an efficient carrier for CUR delivery with an enhanced prolonged release property.

Graphical Abstract


Multi walled carbon nanotubes Curcumin Adsorption isotherm Release Drug delivery 



Authors would like to thanks Universiti Teknologi Malaysia (UTM) for the facilities and financial support.

Compliance with ethical standards

Conflict of interest

“Authors declare that there is no conflict of interest”.


  1. 1.
    Rathaur P, Raja W, Ramteke PW, John SA. Turmeric: the golden spice of life. Int J Pharm Sci Res. 2012;3:1987.Google Scholar
  2. 2.
    Hussain Z, Thu HE, Amjad MW, Hussain F, Ahmed TA, Khan S. Exploring recent developments to improve antioxidant, anti-inflammatory and antimicrobial efficacy of curcumin: a review of new trends and future perspectives. Mater Sci Eng C. 2017;77:1316–26.CrossRefGoogle Scholar
  3. 3.
    Attari F, Zahmatkesh M, Aligholi H, Mehr SE, Sharifzadeh M, Gorji A. Curcumin as a double-edged sword for stem cells: dose, time and cell type-specific responses to curcumin. DARU J Pharm Sci. 2015;23:33.CrossRefGoogle Scholar
  4. 4.
    Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35:3365–83.CrossRefGoogle Scholar
  5. 5.
    Chougala MB, Bhaskar JJ, Rajan MGR, Salimath PV. Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats. Clin Nutr. 2012;31:749–55.CrossRefGoogle Scholar
  6. 6.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4:807–18.CrossRefGoogle Scholar
  7. 7.
    Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK. Turmeric and curcumin: biological actions and medicinal applications. Curr Sci. 2004;87:44–53.Google Scholar
  8. 8.
    Cha T-G, Pan J, Chen H, Salgado J, Li X, Mao C, et al. A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nat Nanotechnol. 2014;9:39–43.CrossRefGoogle Scholar
  9. 9.
    Jafari A, Ghorannevis Z, Ghoranneviss M, Karimi S. Nitrogen ion bombardment of multilayer graphene films grown on cu foil by LPCVD. Int J Mater Res. 2016;107:177–83.CrossRefGoogle Scholar
  10. 10.
    Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009;2:85–120.CrossRefGoogle Scholar
  11. 11.
    Ji S, Liu C, Zhang B, Yang F, Xu J, Long J, et al. Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta - Rev Cancer. 2010;1806:29–35.CrossRefGoogle Scholar
  12. 12.
    Hadavifar M, Bahramifar N, Younesi H, Li Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J. 2014;237:217–28.CrossRefGoogle Scholar
  13. 13.
    Liu X, Tao H, Yang K, Zhang S, Lee S-T, Liu Z. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials. 2011;32:144–51.CrossRefGoogle Scholar
  14. 14.
    Klingeler R, Hampel S, Büchner B. Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. Int J Hyperth Taylor & Francis. 2008;24:496–505.CrossRefGoogle Scholar
  15. 15.
    Mahajan S, Patharkar A, Kuche K, Maheshwari R, Deb PK, Kalia K, et al. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm. 2018;548:540–58.CrossRefGoogle Scholar
  16. 16.
    Shuit SH, Ng EP, Tan SH. A facile and acid-free approach towards the preparation of sulphonated multi-walled carbon nanotubes as a strong protonic acid catalyst for biodiesel production. J Taiwan Inst Chem Eng E. 2015;52:100–8.CrossRefGoogle Scholar
  17. 17.
    Madani SY, Naderi N, Dissanayake O, Tan A. Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011;6:2963–79.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen X. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo Cancer therapy. Angew Chemie Int Ed. 2009;48:7668–72.CrossRefGoogle Scholar
  19. 19.
    Lu Y-J, Wei K-C, Ma C-CM, Yang S-Y, Chen J-P. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surfaces B Biointerfaces. 2012;89:1–9.CrossRefGoogle Scholar
  20. 20.
    Meena S, Choudhary S. Effects of functionalization of carbon nanotubes on its spin transport properties. Mater Chem Phys. 2018;217:175–81.CrossRefGoogle Scholar
  21. 21.
    Wang Z, Zhao J, Song L, Mashayekhi H, Chefetz B, Xing B. Adsorption and desorption of Phenanthrene on carbon nanotubes in simulated gastrointestinal fluids. Environ Sci Technol. 2011;45:6018–24.CrossRefGoogle Scholar
  22. 22.
    Yan XM, Shi BY, Lu JJ, Feng CH, Wang DS, Tang HX. Adsorption and desorption of atrazine on carbon nanotubes. J Colloid Interface Sci. 2008;321:30–8.CrossRefGoogle Scholar
  23. 23.
    Wang Y, Yang S-T, Wang Y, Liu Y, Wang H. Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surfaces B Biointerfaces. 2012;97:62–9.CrossRefGoogle Scholar
  24. 24.
    Oleszczuk P, Pan B, Xing B. Adsorption and desorption of Oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environ Sci Technol. 2009;43:9167–73.CrossRefGoogle Scholar
  25. 25.
    Zeinabad HA, Zarrabian A, Saboury AA, Alizadeh AM, Falahati M. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep. 2016;6:26508.CrossRefGoogle Scholar
  26. 26.
    Tofighy MA, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater. 2011;185:140–7.CrossRefGoogle Scholar
  27. 27.
    Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12:1068–75.CrossRefGoogle Scholar
  28. 28.
    D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257–75.CrossRefGoogle Scholar
  29. 29.
    Bhattacharya K, Sacchetti C, Costa PM, Sommertune J, Brandner BD, Magrini A. Nitric oxide dependent degradation of polyethylene glycol-modified single-walled carbon nanotubes: implications for intra-articular delivery. Adv Healthc Mater. 2018;7:1700916.CrossRefGoogle Scholar
  30. 30.
    Dolatimehr F, Karimi-Sari H, Rezaee-Zavareh MS, Alavian SM, Behnava B, Gholami-Fesharaki M, et al. Combination of sofosbuvir, pegylated-interferon and ribavirin for treatment of hepatitis C virus genotype 1 infection: a systematic review and meta-analysis. DARU J Pharm Sci. 2017;25:11.CrossRefGoogle Scholar
  31. 31.
    Novaes LC de L, Jozala AF, Mazzola PG, Júnior AP, Novaes LC de L, Jozala AF, et al. The influence of pH, polyethylene glycol and polyacrylic acid on the stability of stem bromelain. Brazilian J Pharm Sci. 2014;50:371–80.CrossRefGoogle Scholar
  32. 32.
    Davarpanah F, Yazdi AK, Barani M, Mirzaei M, Torkzadeh-Mahani M. Magnetic delivery of antitumor carboplatin by using PEGylated-Niosomes. DARU J Pharm Sci. 2018;26:57–64.CrossRefGoogle Scholar
  33. 33.
    Sarier N, Onder E. Organic modification of montmorillonite with low molecular weight polyethylene glycols and its use in polyurethane nanocomposite foams. Thermochim Acta. 2010;510:113–21.CrossRefGoogle Scholar
  34. 34.
    AM K, Rashid NA. Study of stability and Dispersibility of oxidized multiwall carbon nanotube and characterization with analytical methods for bioapplication. J Chem Health Ris. 2011;1:17–22.Google Scholar
  35. 35.
    Balaji RA, Raghunathan S, Revathy R. Levofloxacin: formulation and in-vitro evaluation of alginate and chitosan nanospheres. Egypt Pharm J. 2015;14:30–5.CrossRefGoogle Scholar
  36. 36.
    Shi X, Zheng Y, Wang G, Lin Q, Fan J. pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv. 2014;4:47056–65.CrossRefGoogle Scholar
  37. 37.
    Zhou Y, Pervin F, Lewis L, Jeelani S. Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater Sci Eng A. 2008;475:157–65.CrossRefGoogle Scholar
  38. 38.
    Su F, Lu C, Hu S. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids Surfaces A Physicochem Eng Asp. 2010;353:83–91.CrossRefGoogle Scholar
  39. 39.
    Branca C, Frusteri F, Magazù V, Mangione A. Characterization of carbon nanotubes by TEM and infrared spectroscopy. J Phys Chem B. 2004;108:3469–73.CrossRefGoogle Scholar
  40. 40.
    Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T. Reduced graphene oxide-metal/metal oxide composites: facile synthesis and application in water purification. J Hazard Mater. 2011;186:921–31.CrossRefGoogle Scholar
  41. 41.
    Viseras MT, Aguzzi C, Cerezo P, Viseras C, Valenzuela C. Equilibrium and kinetics of 5-aminosalicylic acid adsorption by halloysite. Microporous Mesoporous Mater. 2008;108:112–6.CrossRefGoogle Scholar
  42. 42.
    Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6:555.CrossRefGoogle Scholar
  43. 43.
    Mohammadi Nodeh MK, Gabris MA, Rashidi Nodeh H, Esmaeili Bidhendi M. Efficient removal of arsenic(III) from aqueous media using magnetic polyaniline-doped strontium–titanium nanocomposite. Environ Sci Pollut Res. 2018;25:16864–74.CrossRefGoogle Scholar
  44. 44.
    Rashidi Nodeh H, Sereshti H. Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media. RSC Adv. 2016;6:89953–65.CrossRefGoogle Scholar
  45. 45.
    Dada A. Olalekan, Olatunya AM, Dada. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified Rice husk. IOSR J Appl Chem. 3:2278–5736.Google Scholar
  46. 46.
    Dehghani MH, Sanaei D, Ali I, Bhatnagar A. Removal of chromium (VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J Mol Liq. 2016;215:671–9.CrossRefGoogle Scholar
  47. 47.
    Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156:2–10.CrossRefGoogle Scholar
  48. 48.
    Luo S, Xu X, Zhou G, Liu C, Tang Y, Liu Y. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(Π) from wastewater. J Hazard Mater. 2014;274:145–55.CrossRefGoogle Scholar
  49. 49.
    Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater. 2011;186:458–65.CrossRefGoogle Scholar
  50. 50.
    Nodeh HR, Sereshti H, Afsharian EZ, Nouri N. Enhanced removal of phosphate and nitrate ions from aqueous media using nanosized lanthanum hydrous doped on magnetic graphene nanocomposite. J Environ Manag. 2017;197:265–74.CrossRefGoogle Scholar
  51. 51.
    Khan TA, Chaudhry SA, Ali I. Equilibrium uptake, isotherm and kinetic studies of cd (II) adsorption onto iron oxide activated red mud from aqueous solution. J Mol Liq. 2015;202:165–75.CrossRefGoogle Scholar
  52. 52.
    Alizadeh Eslami P, Kamboh MA, Rashidi Nodeh H, Wan Ibrahim WA. Equilibrium and kinetic study of novel methyltrimethoxysilane magnetic titanium dioxide nanocomposite for methylene blue adsorption from aqueous media. Appl Organomet Chem. 2018;32:e4331.CrossRefGoogle Scholar
  53. 53.
    Gabris MA, Jume BH, Rezaali M, Shahabuddin S, Rashidi Nodeh H, Saidur R. Novel magnetic graphene oxide functionalized cyanopropyl nanocomposite as an adsorbent for the removal of Pb (II) ions from aqueous media: equilibrium and kinetic studies. Environ Sci Pollut Res. 2018;25:27122–32.CrossRefGoogle Scholar
  54. 54.
    Ngo HH, Guo W, Zhang J, Liang S, Ton-That C, Zhang X. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresour Technol. 2015;182:353–63.CrossRefGoogle Scholar
  55. 55.
    Wang W, Li M, Zeng Q. Thermodynamics of Cr (VI) adsorption on strong alkaline anion exchange fiber. Trans Nonferrous Met Soc China. 2012;22:2831–9.CrossRefGoogle Scholar
  56. 56.
    Zawawi NA, Majid ZA, Rashid NAA. Adsorption and desorption of curcumin by poly (vinyl) alcohol-multiwalled carbon nanotubes (PVA-MWCNT). Colloid Polym Sci. 2017;295:1925–36.CrossRefGoogle Scholar
  57. 57.
    Yang P, Quan Z, Li C, Kang X, Lian H, Lin J. Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials. 2008;29:4341–7.CrossRefGoogle Scholar
  58. 58.
    Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci. 2012;368:540–6.CrossRefGoogle Scholar
  59. 59.
    Wang H, Chen J, Xu C, Shi L, Tayier M, Zhou J, et al. Cancer nanomedicines stabilized by π-π stacking between heterodimeric prodrugs enable exceptionally high drug loading capacity and safer delivery of drug combinations. Theranostics. 2017;7:3638–52.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Somayeh Koupaei Malek
    • 1
  • Mohammad Ali Gabris
    • 1
  • Binta Hadi Jume
    • 1
  • Raheleh Baradaran
    • 1
  • Madzlan Aziz
    • 1
  • Khairil Juhanni Bt. Abd Karim
    • 1
  • Hamid Rashidi Nodeh
    • 2
    Email author return OK on get
  1. 1.Universiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Department of Food Science & Technology, Faculty of Food Industry and AgricultureStandard Research Institute (SRI)KarajIran

Personalised recommendations