Advertisement

DARU Journal of Pharmaceutical Sciences

, Volume 26, Issue 2, pp 199–207 | Cite as

N-substituted piperazinyl sarafloxacin derivatives: synthesis and in vitro antibacterial evaluation

  • Ali Asadipour
  • Mohammad Hassan Moshafi
  • Leila Khosravani
  • Setareh Moghimi
  • Elham Amou
  • Loghman Firoozpour
  • Ghazaleh Ilbeigi
  • Keivan Beiki
  • Ehsan Soleimani
  • Alireza Foroumadi
Research Article
  • 41 Downloads

Abstract

Background

Fluoroquinolones (FQs) are compounds of major interest with broad antimicrobial activities against community and hospital-acquired infections such as respiratory tract infections (nosocomial pneumonia, chronic bronchitis and tuberculosis), skin and soft tissue infections, bone and joint infections, intra-abdominal infections and sexually transmitted diseases. This broad range of activities along with favorable pharmacokinetic and low toxicity introduced this class of compounds as important antimicrobial chemotherapy agents. The rapid increase in prevalence of FQs resistant microbes in environment motivated medicinal chemists to discover new quinolone-based compounds with potent activities against Gram-positive bacteria.

Methods

The designed compounds were prepared through the two-component reaction between aromatic α-haloketones or α-halooximes and sarafloxacin in the presence of NaHCO3 in DMF, affording the corresponding N-[2-(aryl-3-yl) ethyl] piperazinyl quinolone derivatives in good yields. All synthesized compounds were evaluated for antibacterial activities against Gram-positive [Staphylococcus aureus ATCC 6538p, Micrococcus luteus, ATCC 1110, Staphylococcus epidermidis ATCC 12228 and Bacillus subtilis ATCC 6633] and Gram-negative [Escherichia coli ATCC 8739, Klebsiella pneumoniae ATCC 10031 Pseudomonas aeruginosa ATCC 9027 and Serratia marcescens PTCC 1111] bacteria.

Results

The antibacterial activities of 24 new compounds were reported as MIC values in comparison to sarafloxacin. The most active compound, 4 g, exhibited similar inhibitory activity against Gram-positive bacteria including S. aureus, S. epidermidis and B. subtilis compared to positive control. Furthermore, benzyloxime incorporated derivatives (4 s-4x) showed poor activity against all tested strains, except 4x.

Conclusion

The obtained results indicated that the synthesized compounds containing substituted piperazine moiety at the C-7 position displayed same or weak inhibitory activities compared to sarafloxacin.

Graphical abstract

Keywords

Antibacterial activity Quinolones Synthesis Gram-positive bacteria 

Notes

Acknowledgments

The authors declare no conflict of interests. This work was supported by a grant from the Iranian National Science Foundation (INSF); Grant no. 93023097.

References

  1. 1.
    Hooper DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis. 2001;32(Supplement_1):9–15.CrossRefGoogle Scholar
  2. 2.
    Redgrave LS, Sutton SB, Webber MA, Piddock LJV. Fluoroquinolone resistance: mechanisms, impact on bacteria and role in evolutionary success. Trends Microbiol. 2014;22:438–45.CrossRefPubMedGoogle Scholar
  3. 3.
    Bisacchi GS. Origins of the quinolone class of antibacterials: an expanded "discovery story". J Med Chem. 2015;58:4874–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Hernandez A, Sanchez MB, Martinez JL. Quinolone resistance: much more than predicted. Front Microbiol. 2011;2:22–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hooper DC. New uses for new and old quinolones and the challenge of resistance. Clin Infect Dis. 2000;30:243–54.CrossRefPubMedGoogle Scholar
  6. 6.
    Mascellino MT, Farinelli S, Iegri F, Iona E, De CS. Antimicrobial activity of fluoroquinolones and other antibiotics on 1,116 clinical gram-positive and gram-negative isolates. Drugs Exp Clin Res. 1998;24:139–51.PubMedGoogle Scholar
  7. 7.
    Petri WA, Hardman JG, Limbird LE, Gilman AG, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 1179–83.Google Scholar
  8. 8.
    Albrecht R. Development of antibacterial agents of the nalidixic acid type. Prog Drug Res. 1977;21:9–104.PubMedGoogle Scholar
  9. 9.
    Higgins PG, Fluit AC, Schmitz FJ. Fluoroquinolones: structure and target sites. Curr Drug Targets. 2003;4:181–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Correia S, Poeta P, Hebraud M, Capelo JL, Igrejas G. Mechanism of quinolone action and resistance: where do we stand. J Med Microbiol. 2017;66:551–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry. 2014;53:1565–74.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6:a025320.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shen LL, Mitscher LA, Sharma PN O’ Donnell TJ, Chu DWT, Copper CS, Rosen T. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: a cooperative drug-DNA binding model. Biochemistry 1989;28:3886–3894.CrossRefPubMedGoogle Scholar
  14. 14.
    Odagiri T, Inagaki H, Nagamochi M, Kitamura T, Komoriya S, Takahashi A. Design, synthesis, and biological evaluation of novel 7-[(3aS,7aS)-3a-Aminohexahydropyrano[3,4-c]pyrrol-2(3H)-yl]-8-methoxyquinolines with potent antibacterial activity against respiratory pathogens. J Med Chem. 2018;61:7234–44.CrossRefPubMedGoogle Scholar
  15. 15.
    Koga H, Itoh A, Murayama S, Suzue S, Irikura T. Structure-activity relationship of anti-bacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinolone-3-carboxylic acids. J Med Chem. 1980;23:1358–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Cooper CS, Klock PL, Chu DT, Hardy DJ, Swanson RN, Plattner JJ. Preparation and in-vitro and in-vivo evaluation of quinolones with selective activity against gram-positive organism. J Med Chem. 1992;35:1392–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Shafiee A, Haddad Zahmatkesh M, Mohammadhosseini N, Khalafy J, Emami S, Moshafi MH, et al. Synthesis and in-vitro antibacterial activity of N-piperazinyl quinolone derivatives with 5-chloro-2-thienyl group. Daru J Pharm Sci. 2008;16:189–95.Google Scholar
  18. 18.
    Letafat BS, Emami S, Mohammadhosseini N, Faramarzi MA, Samadi N, Shafiee A, et al. Synthesis and antibacterial activity of new N-[2-(thiophen-3-yl)ethyl]piperazinyl quinolones. Chem Pharm Bull. 2007;55:894–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Foroumadi A, Mohammadhosseini N, Emami S, Letafat B, Faramarzi MA, Samadi N, et al. Synthesis and antibacterial activity of new 7-piperazinyl-quinolones containing a functionalized 2-(furan-3-yl)ethyl. Arch Pharm Chem. Life Sci. 2007;340:47–52.CrossRefGoogle Scholar
  20. 20.
    Foroumadi A, Emami S, Mansouri S, Javidnia A, Saeid-Adeli N, Shirazi FH, et al. Synthesis and antibacterial activity of levofloxacin derivatives with certain bulky residues on piperazine rings. Eur J Med Chem. 2007;42:985–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Emami S, Foroumadi A, Faramarzi MA, Samadi N. Synthesis and antibacterial activity of quinolone-based compounds containing a coumarin moiety. Arch Pharm Chem Life Sci. 2008;341:42–8.CrossRefGoogle Scholar
  22. 22.
    Shafiee A, Emami S, Ghodsi S, Najjari S, Sorkhi M, Samadi N, et al. Synthesis and antibacterial activity of N-[2-(2-naphthyl)ethyl] piperazinyl quinolones. J Iran Chem Soc. 2009;6:325–33.CrossRefGoogle Scholar
  23. 23.
    Jazayeri S, Moshafi MH, Firoozpour L, Emami S, Rajabalian S, Haddad M, et al. Synthesis and antibacterial activity of nitroaryl thiadiazole-gatifloxacin hybrids. Eur J Med Chem. 2009;44:1205–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Foroumadi A, Emami S, Mehni M, Moshafi MH, Shafiee A. Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2-5-bromothiophen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. Bioorg Med Chem Lett. 2005;15:4536–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Foroumadi A, Oboudiat M, Emami S, Karimollah A, Saghaee L, Moshafi MH, et al. Synthesis and antibacterial activity of N-[2-[5-(methylthio) thiophen-2-yl]-2-oxoethyl] and N-[2-[5-(methylthio) thiophen-2-yl]-2-(oxyimino) ethyl] piperazinylquinolone derivatives. Bioorg Med Chem. 2006;14:3421–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Baron EJ, Finegold SM. Bailey Scott’s diagnostic microbiology. 11th ed. St. Louis: CV Mosby Company; 2002. p. 235–6.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ali Asadipour
    • 1
    • 2
  • Mohammad Hassan Moshafi
    • 3
  • Leila Khosravani
    • 4
  • Setareh Moghimi
    • 4
  • Elham Amou
    • 4
  • Loghman Firoozpour
    • 4
  • Ghazaleh Ilbeigi
    • 3
  • Keivan Beiki
    • 3
  • Ehsan Soleimani
    • 3
  • Alireza Foroumadi
    • 4
    • 5
  1. 1.Department of Medicinal Chemistry, Faculty of PharmacyKerman University of Medical SciencesKermanIran
  2. 2.Environmental Health Engineering Research CenterKerman University of Medical SciencesKermanIran
  3. 3.Pharmaceutics Research Center, Institute of NeuropharmacologyKerman University of Medical SciencesKermanIran
  4. 4.Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS)Tehran University of Medical SciencesTehranIran
  5. 5.Department of Medicinal Chemistry, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations