Advertisement

DARU Journal of Pharmaceutical Sciences

, Volume 26, Issue 2, pp 179–190 | Cite as

Neuroprotective, antidiabetic and antioxidant effect of Hedera nepalensis and lupeol against STZ + AlCl3 induced rats model

  • Waleed Javed Hashmi
  • Hammad Ismail
  • Furrukh Mehmood
  • Bushra MirzaEmail author
Research Article
  • 170 Downloads

Abstract

Purpose

This study was aimed to evaluate the effect of Hedera nepalensis crude extract (HNC) and its isolated compound lupeol on antioxidant defence system, biochemical parameters and behavioural indices of Alzheimer disease generated in diabetic rats.

Methods

To evaluate the effect of the plant extract and lupeol, symptoms of Alzheimer and diabetes were induced in rats by STZ + AlCl3 treatment. Glucose level was measured with glucometer followed by antioxidant and biochemical assessment of the treated and untreated animals. Behavioural response of the rats was determined by Elevated Plus Maze (EPM) test and Morris Water Maze (MWM) test followed by determination of brain neurotransmitters by HPLC.

Results

HNC significantly reduced blood glucose level in a time dependent manner and elevated liver function markers were significantly (P < 0.05) reinstated to normal levels. HNC showed increase in level of catalase (CAT), superoxide dismutase (SOD) and reduced glutathione (GSH). HPLC quantification revealed that HNC treatment led to significant (p < 0.001) elevation in the level of neurotransmitters (dopamine and serotonin) in the midbrain region as compared to Alzheimer control (AC) group. EPM and MWM test showed decrease in cognitive and memory impairment in a rat group treated with HNC as compared to AC group.

Conclusion

Overall, results showed that H. nepalensis has therapeutic potential for the treatment of diseases like Alzheimer and diabetes.

Graphical abstract

Therapeutic effect of Hedera nepalensis K. Koch and lupeol against STZ + AICI3 induced diabetic rats model.

Keywords

Alzheimer disease Antioxidant Diabetes mellitus HPLC Lupeol Neurotransmitters 

Notes

Acknowledgements

The authors are highly grateful to the animal house staff for their support.

Authors’ Contributions

WJH and HI conducted all the assays and experimental work. BM conceived the study design and supervised the study. FR contributed in animal dissection. HI and WJH drafted the manuscript and all authors proof read the final version.

Compliance with ethical standards

Competing interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, et al. Apolipoprotein E ε4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med. 2002;137(3):149–55.PubMedCrossRefGoogle Scholar
  2. 2.
    Bi X. Alzheimer disease: update on basic mechanisms. J Am Osteopath Assoc. 2010;110(9):S3.PubMedGoogle Scholar
  3. 3.
    Jellinger KA, Attems J. Prevalence of dementia disorders in the oldest-old: an autopsy study. Acta Neuropathol. 2010;119(4):421–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Penumala M, Zinka RB, Shaik JB, Amooru Gangaiah D. In vitro screening of three Indian medicinal plants for their phytochemicals, anticholinesterase, antiglucosidase, antioxidant, and neuroprotective effects. Biomed Res Int. 2017;2017:1–12.CrossRefGoogle Scholar
  5. 5.
    Penumala M, Zinka RB, Shaik JB, Mallepalli SKR, Vadde R, Amooru DG. Phytochemical profiling and in vitro screening for anticholinesterase, antioxidant, antiglucosidase and neuroprotective effect of three traditional medicinal plants for Alzheimer’s disease and diabetes mellitus dual therapy. BMC Complement Altern Med. 2018;18(1):77.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Förstl H, Kurz A. Clinical features of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 1999;249(6):288–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hänninen T, Laakso MP, et al. Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging. 2004;25(3):303–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Devanand D, Pradhaban G, Liu X, Khandji A, De Santi S, Segal S, et al. Hippocampal and entorhinal atrophy in mild cognitive impairment prediction of Alzheimer disease. Neurology. 2007;68(11):828–36.PubMedCrossRefGoogle Scholar
  9. 9.
    Jauhiainen AM, Pihlajamäki M, Tervo S, Niskanen E, Tanila H, Hänninen T, et al. Discriminating accuracy of medial temporal lobe volumetry and fMRI in mild cognitive impairment. Hippocampus. 2009;19(2):166–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Lain AH, Lieberman AP, Pfannl R, Hedley-Whyte ET. Nodular bilateral amygdala degeneration in demented individuals. Acta Neuropathol. 2010;120(5):683–8.PubMedCentralCrossRefGoogle Scholar
  11. 11.
    Coyle JT, Price DL, DeLong MR. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science. 1983;219(4589):1184–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Bartus RT, Rr D, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217(4558):408–14.PubMedCrossRefGoogle Scholar
  13. 13.
    Kawamata J, Shimohama S. Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer's and Parkinson's diseases. J Alzheimers Dis. 2011;24(supplement2):95–109.PubMedCrossRefGoogle Scholar
  14. 14.
    Ismail H, Mirza B. Evaluation of analgesic, anti-inflammatory, anti-depressant and anti-coagulant properties of Lactuca sativa (CV. Grand Rapids) plant tissues and cell suspension in rats. BMC Complement Altern Med. 2015;15(1):1.CrossRefGoogle Scholar
  15. 15.
    Ismail H, Rasheed A, Haq I-u, Jafri L, Ullah N, Dilshad E, et al. Five indigenous plants of Pakistan with Antinociceptive, anti-inflammatory, antidepressant, and anticoagulant properties in Sprague Dawley rats. Evid Based Complement Alternat Med. 2017;2017:1–10.CrossRefGoogle Scholar
  16. 16.
    Nasir E. Flora of Pakistan. In: Herbarium S, editor. Gordon college, Rawalpindi and department of Botany. Karachi: University of Karachi; 1975. p. 2–3.Google Scholar
  17. 17.
    Timon-David P, Julien J, Gasquet M, Balansard G, Bernard P. Research of antifungal activity from several active principle extracts from climbing-ivy: Hedera helix L. Ann Pharm Fr. 1980;38(6):545–52.PubMedGoogle Scholar
  18. 18.
    Xue M, ZhiYing W. The volatile constituents analysis of Scindapsus aureum and Hedera nepalensis var. sinensis and their inhibition against five fungi. Acta Horticulturae Sinica. 2010;37(6):971–6.Google Scholar
  19. 19.
    Jafri L, Saleem S, Ullah N, Mirza B. In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch. Arab J Chem 2014; 10(2)S3699-S3706.CrossRefGoogle Scholar
  20. 20.
    Hamayun M, Khan SA, Sohn EY, Lee I-J. Folk medicinal knowledge and conservation status of some economically valued medicinal plants of district swat, Pakistan: Lyonia; 2006;11(2):101–113.Google Scholar
  21. 21.
    Saleem S, Jafri L, ul Haq I, Chang LC, Calderwood D, Green BD, et al. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J Ethnopharmacol. 2014;156:26–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Kanwal S, Ullah N, Haq I, Afzal I, Mirza B. Antioxidant, antitumor activities and phytochemical investigation of Hedera nepalensis K. Koch, an important medicinal plant from Pakistan. Pak J Bot. 2011;43(8):85–9.Google Scholar
  23. 23.
    Madhuri S, Pandey G. Some anticancer medicinal plants of foreign origin. Curr Sci. 2009;96(6):779–83.Google Scholar
  24. 24.
    Ismail H, Amanat MA, Iqbal A, Mirza B. Medicinal plants: a complementary and alternative antidepressant therapy. Curr Pharm Des. 2018;24:1–16.CrossRefGoogle Scholar
  25. 25.
    NBG. National Biosafety Guideline, Pakistan Biosafety Rules. Government of Pakistan Notification No. F.2(7)95-Bio. 2005; 336(1): 1-9.Google Scholar
  26. 26.
    Yassa HD, Tohamy AF. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced diabetes mellitus in adult rats. Acta Histochem. 2014;116(5):844–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Akinola OB, Biliaminu SA, Adediran RA, Adeniye KA, Abdulquadir FC. Characterization of prefrontal cortex microstructure and antioxidant status in a rat model of neurodegeneration induced by aluminium chloride and multiple low-dose streptozotocin. Metab Brain Dis. 2015;30(6):1531–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Enas AK. Study of the possible protective and therapeutic influence of coriander (Coriandrum sativum L.) against neurodegenerative disorders and Alzheimer’s disease induced by aluminum chloride in cerebral cortex of male albino rats. Nat Sci. 2010;8(11):202–13.Google Scholar
  29. 29.
    Kumar R, Arora V, Ram V, Bhandari A, Vyas P. Hypoglycemic and hypolipidemic effect of Allopolyherbal formulations in streptozotocin induced diabetes mellitus in rats. International Journal of Diabetes Mellitus. 2015;3(1):45–50.CrossRefGoogle Scholar
  30. 30.
    Sajid M, Khan MR, Shah NA, Shah SA, Ismail H, Younis T, et al. Phytochemical, antioxidant and hepatoprotective effects of Alnus nitida bark in carbon tetrachloride challenged Sprague Dawley rats. BMC Complement Altern Med. 2016;16(1):1–16.Google Scholar
  31. 31.
    Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bannister JV, Calabrese L. Assays for superoxide dismutase. Methods Biochem Anal. 2006;32:279–312.CrossRefGoogle Scholar
  34. 34.
    Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Hussein J, El-Matty D, El-Khayat Z, ABDEL-LATIF Y. Brain neurotransmitters in diabetic rats treated with CO enzyme Q10. Int J Pharm Pharm Sci. 2012;4:554–6.Google Scholar
  37. 37.
    Dilshad E, Zafar S, Ismail H, Waheed MT, Cusido RM, Palazon J, et al. Effect of rol genes on polyphenols biosynthesis in Artemisia annua and their effect on antioxidant and cytotoxic potential of the plant. Appl Biochem Biotechnol. 2016;179(8):1456–68.PubMedCrossRefGoogle Scholar
  38. 38.
    Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2(2):322–8.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bahrmann A, Bahrmann P, Kubiak T, Kopf D, Oster P, Sieber C, et al. Diabetes und Demenz. Z Gerontol Geriatr. 2012;45(1):17–22.PubMedCrossRefGoogle Scholar
  40. 40.
    Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Naudi A, Jove M, Ayala V, Cassanye A, Serrano J, Gonzalo H, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res. 2012;2012:1–14.CrossRefGoogle Scholar
  43. 43.
    Reddy VP, Zhu X, Perry G, Smith MA. Oxidative stress in diabetes and Alzheimer's disease. J Alzheimers Dis. 2009;16(4):763–74.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ahn H-R, Shin M-H, Nam H-S, Park K-S, Lee Y-H, Jeong S-K, et al. The association between liver enzymes and risk of type 2 diabetes: the Namwon study. Diabetol Metab Syndr. 2014;6(1):1.CrossRefGoogle Scholar
  45. 45.
    Samarghandian S, Azimi-Nezhad M, Samini F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. Biomed Res Int. 2014;2014:1–12.CrossRefGoogle Scholar
  46. 46.
    Thabrew MI, Joice P, Rajatissa W. A comparative study of the efficacy of Pavetta indica and Osbeckia octandra in the treatment of liver dysfunction. Planta Med. 1987;53:239–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Tandon A, Bhalla P, Nagpaul J, Dhawan D. Effect of lithium on rat cerebrum under different dietary protein regimens. Drug Chem Toxicol. 2006;29(4):333–44.PubMedCrossRefGoogle Scholar
  48. 48.
    Cifariello A, Pompili A, Gasbarri A. 5-HT7 receptors in the modulation of cognitive processes. Behav Brain Res. 2008;195(1):171–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Reynolds G, Mason S, Meldrum A, De Keczer S, Parties H, Eglen R, et al. 5-Hydroxytryptamine (5-HT) 4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol. 1995;114(5):993–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Abu-Taweel GM, Ajarem JS, Ahmad M. Neurobehavioral toxic effects of perinatal oral exposure to aluminum on the developmental motor reflexes, learning, memory and brain neurotransmitters of mice offspring. Pharmacol Biochem Behav. 2012;101(1):49–56.PubMedCrossRefGoogle Scholar
  51. 51.
    McNamara RK, Skelton RW. The neuropharmacological and neurochemical basis of place learning in the Morris water maze. Brain Res Rev. 1993;18(1):33–49.PubMedCrossRefGoogle Scholar
  52. 52.
    D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev. 2001;36(1):60–90.PubMedCrossRefGoogle Scholar
  53. 53.
    Gispen WH, Biessels G-J. Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 2000;23(11):542–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Artola A. Diabetes, stress and ageing-related changes in synaptic plasticity in hippocampus and neocortex—the same metaplastic process? Eur J Pharmacol. 2008;585(1):153–62.PubMedCrossRefGoogle Scholar
  55. 55.
    Du L-L, Chai D-M, Zhao L-N, Li X-H, Zhang F-C, Zhang H-B, et al. AMPK activation ameliorates Alzheimer's disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer's disease model in rats. J Alzheimers Dis. 2015;43(3):775–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu J, Feng L, Ma D, Zhang M, Gu J, Wang S, et al. Neuroprotective effect of paeonol on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. Neurosci Lett. 2013;549:63–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Ramos A, Pereira E, Martins GC, Wehrmeister TD, Izídio GS. Integrating the open field, elevated plus maze and light/dark box to assess different types of emotional behaviors in one single trial. Behav Brain Res. 2008;193(2):277–88.PubMedCrossRefGoogle Scholar
  58. 58.
    Komada M, Takao K, Miyakawa T. Elevated plus maze for mice. Journal of Visualized Experiments. 2008;22(1088):1-4Google Scholar
  59. 59.
    Korte SM, De Boer SF. A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol. 2003;463(1–3):163–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Rodgers R, Dalvi A. Anxiety, defence and the elevated plus-maze. Neurosci Biobehav Rev. 1997;21(6):801–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Waleed Javed Hashmi
    • 1
  • Hammad Ismail
    • 2
  • Furrukh Mehmood
    • 1
  • Bushra Mirza
    • 1
    Email author
  1. 1.Department of Biochemistry, Faculty of Biological SciencesQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Biochemistry and BiotechnologyUniversity of GujratGujratPakistan

Personalised recommendations