Advertisement

DARU Journal of Pharmaceutical Sciences

, Volume 26, Issue 2, pp 143–154 | Cite as

Anticancer potential of Ferula hezarlalehzarica Y. Ajani fraction in Raji lymphoma cell line: induction of apoptosis, cell cycle arrest, and changes in mitochondrial membrane potential

  • Yahya Asemani
  • Abbas Azadmehr
  • Reza Hajiaghaee
  • Zahra Amirghofran
Research Article
  • 115 Downloads

Abstract

Background

Cancer is a major cause of mortality. The present study evaluates the antitumor effects of Ferula hezarlalehzarica Y. Ajani fractions on various cancer cell lines, including the Raji Burkitt’s lymphoma cells.

Methods

We evaluated the cytotoxic activity of various fractions of F. hezarlalehzarica against tumor cell lines by the MTT assay. Annexin V-PE/7-AAD and cell cycle analysis were assessed by flow cytometry. Expressions of genes associated with cell death and proliferation (Bax, Bcl-2, Fas, and c-Myc) were determined using real-time PCR. Alteration in mitochondrial membrane potential (MMP) was examined by JC-1 dye staining.

Results

The hexane fraction of F. hezarlalehzarica showed the highest degree of cytotoxicity against Raji cells (IC50 = 31.6 μg/ml). Flow cytometry analysis showed that 200 μg/ml of the fraction induced apoptosis in >96% of Raji cells after 24 h. In cell cycle analysis, at the same concentration, the percentage of apoptotic cells in the sub G1phase increased to 95.25 ± 1.76% at 48 h of treatment. The fraction induced cell cycle arrestat the G0/G1phase. Exposure to 100 μg/ml of the fraction after 48 h increased the percentage of G0/G1 cells (76.3 ± 6.08%) compared to the negative control (<50%). Treatment with75μg/ml of fraction reduced the expressions of Bcl-2 (0.23 ± 0.008-fold) and c-Myc (0.68 ± 0.07-fold) and increased Bax (1.75 ± 0.31-fold) and Fas (5.02 ± 0.74-fold; p < 0.01). We observed a decrease in MMP (≈0.4, p < 0.05) at ≥100 μg/ml and this effect remained almost unchanged until 48 h.

Conclusions

The F. hezarlalehzarica hexane fraction induced apoptosis in Raji cells by changing the expression of apoptosis-related genes, cell cycle distribution, and MMP. These data suggested a potential effectiveness of F. hezarlalehzarica for inducing cell death in lymphoma cells.

Graphical abstract

Keywords

Ferula hezarlalehzarica Apoptosis Raji cell line Lymphoma 

Notes

Acknowledgements

This work was extracted from the thesis written by one of the authors, Y. Asemani, and was supported by grants no 12203 and 12239 from Shiraz University of Medical Sciences.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

References

  1. 1.
    Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25(1):65–80.CrossRefPubMedGoogle Scholar
  2. 2.
    Fathi M, Amirghofran Z, Shahriari M. Soluble Fas and Fas ligand and prognosis in children with acute lymphoblastic leukemia. Med Oncol. 2012;29(3):2046–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Kamazani FM, Bahoush-Mehdiabadi G, Aghaeipour M, Vaeli S, Amirghofran Z. The expression and prognostic impact of CD95 death receptor and CD20, CD34 and CD44 differentiation markers in pediatric acute lymphoblastic leukemia. Iranian JPediatr. 2014;24(4):371.Google Scholar
  4. 4.
    Araste JM, Sarvestani EK, Aflaki E, Amirghofran Z. Fas gene polymorphisms in systemic lupus erythematosus and serum levels of some apoptosis-related molecules. Immunol Investig. 2010;39(1):27–38.CrossRefGoogle Scholar
  5. 5.
    Yamada A, Arakaki R, Saito M, Kudo Y, Ishimaru N. Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front Immunol. 2017;8:403.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Glab J, Mbogo G, Puthalakath H. BH3-only proteins in health and disease. Int Rev Cell Mol Biol. 2017;328:163–96.CrossRefPubMedGoogle Scholar
  7. 7.
    Moreno Ayala MA, Gottardo MF, Asad AS, Zuccato C, Nicola A, Seilicovich A, et al. Immunotherapy for the treatment of breast cancer. Expert OpinBiol Ther. 2017;17(7):797–812.CrossRefGoogle Scholar
  8. 8.
    Vickery CR, La Clair JJ, Burkart MD, Noel JP. Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products. Curr Opin Chem Biol. 2016;31:66–73.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pimenov MG, Leonov, MVE. The genera of the Umbelliferae: a nomenclator. Royal Botanic Gardens, Kew; 1993.Google Scholar
  10. 10.
    Amiri MS, Joharchi MR. Ethnobotanical knowledge of Apiaceae family in Iran: a review. Avicenna J Phytomed. 2016;6:621–35.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Medicinal ZA. Plants[in Persian], Vol. II. Tehran University Publications,Tehran. 1996:592–602.Google Scholar
  12. 12.
    Abd El-Razek MH. Terpenoid coumarins of the genus Ferula. Heterocycles. 2003;60:689–716.CrossRefGoogle Scholar
  13. 13.
    Iranshahi M. A review of volatile sulfur-containing compounds from terrestrial plants: biosynthesis, distribution and analytical methods. J Essent Oil Res. 2012;24(4):393–434.CrossRefGoogle Scholar
  14. 14.
    Valiahdi SM, Iranshahi M, Sahebkar A. Cytotoxic activities of phytochemicals from Ferula species. Daru. 2013;21(1):39.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ajani Y, Ajani M. A new species of Ferula (Umbelliferae) from southern Iran. Edinb J Bot. 2008;65(3):425–31.CrossRefGoogle Scholar
  16. 16.
    Nguyen L, Papenhausen P, Shao H. The role of c-MYC in B-cell lymphomas: diagnostic and molecular aspects. Genes. 2017;8(4):116.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Dehghani M, Sharifpour S, Amirghofran Z, Zare HR. Prognostic significance of T cell subsets in peripheral blood of B cell non-Hodgkin’s lymphoma patients. Med Oncol. 2012;29(4):2364–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Esmaeilbeig M, Kouhpayeh SA, Amirghofran Z. An investigation of the growth inhibitory capacity of several medicinal plants from Iran on tumor cell lines. Iranian J cancer prev. 2015;8(5):e4032.CrossRefGoogle Scholar
  19. 19.
    Ebrahimnezhad Darzi S, Amirghofran Z. Dichloromethane fraction of Melissa officinalis induces apoptosis by activation of intrinsic and extrinsic pathways in human leukemia cell lines. Immunopharmacol Immunotoxicol. 2013;35(3):313–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Kenwood BM, Weaver JL, Bajwa A, Poon IK, Byrne FL, Murrow BA Calderone JA, et al. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metabol. 2014;3(2):114–23.CrossRefGoogle Scholar
  21. 21.
    Bagheri SM, Sahebkar A, Gohari AR, Saeidnia S, Malmir M, Iranshahi M. Evaluation of cytotoxicity and anticonvulsant activity of some Iranian medicinal Ferula species. Pharm Biol. 2010;48(3):242–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Lee C-L, Chiang L-C, Cheng L-H, Liaw C-C, Abd El-Razek MH, Chang F-R, et al. Influenza a (H1N1) antiviral and cytotoxic agents from Ferula assafoetida. J Nat Prod. 2009;72(9):1568–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Hajimehdipoor H, Esmaeili S, Ramezani R, Jafari Anaraki M, Mosaddegh M. The cytotoxic effects of Ferula persica var. persica and Ferula hezarlalehzarica against HepG2, A549, HT29, MCF7 and MDBK cell lines. Iranian J Pharmaceut Sci. 2012;8(2):113–7.Google Scholar
  24. 24.
    Plesca D, Mazumder S, Almasan A. DNA damage response and apoptosis. Methods Enzymol. 2008;446:107–22.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hasanzadeh D, Mahdavi M, Dehghan G, Charoudeh HN. Farnesiferol C induces cell cycle arrest and apoptosis mediated by oxidative stress in MCF-7 cell line. Toxicol Rep. 2017;4:420–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond: mitochondrial performance in apoptosis. FEBS J. 2017.Google Scholar
  27. 27.
    Kantari C, Walczak H. Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta. 2011;1813(4):558–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50(2):98–115.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kanda K, Hu H-M, Zhang L, Grandchamps J, Boxer LM. NF-κB activity is required for the deregulation of c-myc expression by the immunoglobulin heavy chain enhancer. J Biol Chem. 2000;275(41):32338–46.CrossRefPubMedGoogle Scholar
  30. 30.
    Hussin F, Eshkoor SA, Rahmat A, Othman F, Akim A. The Centella asiatica juice effects on DNA damage, apoptosis and gene expression in hepatocellular carcinoma (HCC). BMC Complement Altern Med. 2014;14(1):32.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Park J-S, Bang O-S, Kim J. Screening of Stat3 inhibitory effects of Korean herbal medicines in the A549 human lung cancer cell line. Integr Med Res. 2014;3(2):67–73.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Immunology, Medical SchoolShiraz University of Medical SciencesShirazIran
  2. 2.Immunology DepartmentBabol University of Medical SciencesBabolIran
  3. 3.Medicinal Plants Research CenterInstitute of Medicinal Plants, ACECRKarajIran
  4. 4.Autoimmune Disease Research CenterShiraz University of Medical SciencesShirazIran

Personalised recommendations