DARU Journal of Pharmaceutical Sciences

, Volume 26, Issue 2, pp 93–103 | Cite as

Effects of metformin on the PI3K/AKT/FOXO1 pathway in anaplastic thyroid Cancer cell lines

  • Zahra Nozhat
  • Samira Mohammadi-Yeganeh
  • Feridoun Azizi
  • Maryam Zarkesh
  • Mehdi HedayatiEmail author
Research Article



The PI3K/AKT/FOXO signaling pathway plays an important role in the survival, proliferation and apoptosis of tumor cells. The aim of the present study was to explore whether metformin could affect insulin-promoting cell growth by regulation of this pathway.

Material and methods

Anaplastic thyroid cancer cells were treated with 0–60 mM metformin for 24, 48 and 72 h. Cell viability, morphology, apoptosis and migration were investigated by MTT assay, microscopy observation, AnexinV-PI and the wound healing assay, respectively. Expression levels of PI3K, AKT and FOXO1 were detected by RT-qPCR, and proteins phosphorylated levels were determined by ELISA.


Metformin decreased cell viability and migration in a significant time-and dose-dependent manner, and induced apoptosis and morphological changes in the cells. RT-qPCR results showed that expression levels of PI3K, AKT and FOXO1 was inhibited by metformin (P < 0.05). However, there was no significant change in the expression level of AKT following metformin treatment for C643 cell line (P > 0.05). ELISA results showed that metformin treatment had no significant effects on the phosphorylated levels of PI3K, AKT and FOXO1 (P > 0.05).


The downregulation of FOXO1 was intensified by metformin, but no increase in cell viability was observed following FOXO1 downregulation by metformin. However, the exact molecular mechanism of metformin on inhibition of the PI3K/AKT pathway and subsequent decrease in cell viability remains unclear and further studies are required for its clarification.


Anaplastic thyroid Cancer Metformin PI3K AKT FOXO1 



The authors are grateful to Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences Tehran, Iran for their excellent technical and financial supports. This manuscript was extracted from PhD thesis of Zahra Nozhat (grant No: 852). The authors wish to acknowledge Ms. Niloofar Shiva for editing of English grammar and syntax of the manuscript.

Compliance with ethical standards

Conflict of interest

There is no conflict of interest.

Supplementary material

40199_2018_208_MOESM1_ESM.pdf (829 kb)
ESM 1 (PDF 829 kb)
40199_2018_208_MOESM2_ESM.pdf (449 kb)
ESM 2 (PDF 449 kb)
40199_2018_208_MOESM3_ESM.pdf (449 kb)
ESM 3 (PDF 449 kb)
40199_2018_208_MOESM4_ESM.pdf (450 kb)
ESM 4 (PDF 449 kb)
40199_2018_208_MOESM5_ESM.rar (82.3 mb)
ESM 5 (RAR 84288 kb)
40199_2018_208_Fig8_ESM.png (26 kb)

(PNG 25 kb)

40199_2018_208_MOESM6_ESM.tif (72 kb)
High Resolution (TIF 71 kb)
40199_2018_208_Fig9_ESM.png (29 kb)

(PNG 29 kb)

40199_2018_208_MOESM7_ESM.tif (75 kb)
High Resolution (TIF 75 kb)
40199_2018_208_Fig10_ESM.png (27 kb)

(PNG 27 kb)

40199_2018_208_MOESM8_ESM.tif (75 kb)
High Resolution (TIF 74 kb)
40199_2018_208_MOESM9_ESM.pptx (41 mb)
ESM 9 (PPTX 42002 kb)
40199_2018_208_Fig11_ESM.png (14 kb)
ESM 10

(PNG 13 kb)

40199_2018_208_MOESM10_ESM.tif (85 kb)
High Resolution (TIF 85 kb)
40199_2018_208_Fig12_ESM.png (13 kb)
ESM 11

(PNG 13 kb)

40199_2018_208_MOESM11_ESM.tif (79 kb)
High Resolution (TIF 79 kb)
40199_2018_208_Fig13_ESM.png (14 kb)
ESM 12

(PNG 13 kb)

40199_2018_208_MOESM12_ESM.tif (85 kb)
High Resolution (TIF 84 kb)
40199_2018_208_MOESM13_ESM.pptx (156 kb)
ESM 13 (PPTX 156 kb)
40199_2018_208_Fig14_ESM.png (9 kb)
ESM 14

(PNG 8 kb)

40199_2018_208_MOESM14_ESM.tif (49 kb)
High Resolution (TIF 49 kb)
40199_2018_208_Fig15_ESM.png (17 kb)
ESM 15

(PNG 17 kb)

40199_2018_208_MOESM15_ESM.tif (98 kb)
High Resolution (TIF 97 kb)
40199_2018_208_Fig16_ESM.png (15 kb)
ESM 16

(PNG 15 kb)

40199_2018_208_MOESM16_ESM.tif (89 kb)
High Resolution (TIF 89 kb)
40199_2018_208_Fig17_ESM.png (17 kb)
ESM 17

(PNG 17 kb)

40199_2018_208_MOESM17_ESM.tif (101 kb)
High Resolution (TIF 100 kb)
40199_2018_208_Fig18_ESM.png (14 kb)
ESM 18

(PNG 14 kb)

40199_2018_208_MOESM18_ESM.tif (87 kb)
High Resolution (TIF 86 kb)
40199_2018_208_Fig19_ESM.png (14 kb)
ESM 19

(PNG 13 kb)

40199_2018_208_MOESM19_ESM.tif (75 kb)
High Resolution (TIF 75 kb)
40199_2018_208_Fig20_ESM.png (13 kb)
ESM 20

(PNG 13 kb)

40199_2018_208_MOESM20_ESM.tif (83 kb)
High Resolution (TIF 83 kb)


  1. 1.
    Nozhat Z, Hedayati M. PI3K/AKT pathway and its mediators in thyroid carcinomas. Molecular diagnosis & therapy. 2016;20(1):13–26.CrossRefGoogle Scholar
  2. 2.
    Nozhat Z, Hedayati M, Pourhassan H. Signaling pathways in medullary thyroid carcinoma: therapeutic implications. International Journal of Endocrine Oncology. 2016;3(4):299–312.CrossRefGoogle Scholar
  3. 3.
    Cornett WR, Sharma AK, Day TA, Richardson MS, Hoda RS, van Heerden JA, et al. Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep. 2007;9(2):152–8.CrossRefPubMedGoogle Scholar
  4. 4.
    AIN KB. Anaplastic thyroid carcinoma: behavior, biology, and therapeutic approaches. Thyroid. 1998;8(8):715–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen G, Xu S, Renko K, Derwahl M. Metformin inhibits growth of thyroid carcinoma cells, suppresses self-renewal of derived cancer stem cells, and potentiates the effect of chemotherapeutic agents. The Journal of Clinical Endocrinology & Metabolism. 2012;97(4):E510–E20.CrossRefGoogle Scholar
  6. 6.
    Klubo-Gwiezdzinska J, Costello J Jr, Patel A, Bauer A, Jensen K, Mete M, et al. Treatment with metformin is associated with higher remission rate in diabetic patients with thyroid cancer. The Journal of Clinical Endocrinology & Metabolism. 2013;98(8):3269–79.CrossRefGoogle Scholar
  7. 7.
    Sahra IB, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene. 2008;27(25):3576–86.CrossRefPubMedGoogle Scholar
  8. 8.
    Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase–dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66(21):10269–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Yung MMH, Chan DW, Liu VWS, Yao K-M, Ngan HY-S. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer. 2013;13(1):327.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rattan R, Giri S, Hartmann LC, Shridhar V. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner. J Cell Mol Med. 2011;15(1):166–78.CrossRefPubMedGoogle Scholar
  11. 11.
    Bikas A, Van Nostrand D, Jensen K, Desale S, Mete M, Patel A, et al. Metformin attenuates 131I-induced decrease in peripheral blood cells in patients with differentiated thyroid cancer. Thyroid. 2016;26(2):280–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen G, Nicula D, Renko K, Derwahl M. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol Rep. 2015;33(4):1994–2000.CrossRefPubMedGoogle Scholar
  13. 13.
    Cho SW, Yi KH, Han SK, Sun HJ, Kim YA, Oh B-C, et al. Therapeutic potential of metformin in papillary thyroid cancer in vitro and in vivo. Mol Cell Endocrinol. 2014;393(1):24–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Han B, Cui H, Kang L, Zhang X, Jin Z, Lu L, et al. Metformin inhibits thyroid cancer cell growth, migration, and EMT through the mTOR pathway. Tumor Biol. 2015;36(8):6295–304.CrossRefGoogle Scholar
  15. 15.
    Bartolomé A, Guillén C, Benito M. Role of the TSC1-TSC2 complex in the integration of insulin and glucose signaling involved in pancreatic β-cell proliferation. Endocrinology. 2010;151(7):3084–94.CrossRefPubMedGoogle Scholar
  16. 16.
    Paes JE, Ringel MD. Dysregulation of the phosphatidylinositol 3-kinase pathway in thyroid neoplasia. Endocrinol Metab Clin N Am. 2008;37(2):375–87.CrossRefGoogle Scholar
  17. 17.
    Liu Y, Zhang Y, Jia K, Dong Y, Ma W. Metformin inhibits the proliferation of A431 cells by modulating the PI3K/Akt signaling pathway. Experimental and therapeutic medicine. 2015;9(4):1401–6.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors; regulation by AKT and 14-3-3 proteins. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2011;1813(11):1938–45.Google Scholar
  19. 19.
    Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284(35):23204–16.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Myatt SS, Wang J, Monteiro LJ, Christian M, Ho K-K, Fusi L, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010;70(1):367–77.CrossRefPubMedGoogle Scholar
  21. 21.
    Xie L, Ushmorov A, Leithäuser F, Guan H, Steidl C, Färbinger J, et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood. 2012;119(15):3503–11.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, Bjartell A, et al. Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS One. 2013;8(8):e72400.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zaballos MA, Santisteban P. FOXO1 controls thyroid cell proliferation in response to TSH and IGF-I and is involved in thyroid tumorigenesis. Mol Endocrinol. 2013;27(1):50–62.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta (BBA)-molecular. Cell Res. 2011;1813(11):1978–86.Google Scholar
  25. 25.
    Song H-m, Song J-l, Li D-f, Hua K-y, Zhao B-k, Fang L. Inhibition of FOXO1 by small interfering RNA enhances proliferation and inhibits apoptosis of papillary thyroid carcinoma cells via Akt/FOXO1/Bim pathway. OncoTargets and therapy. 2015;8:3565.Google Scholar
  26. 26.
    Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A, et al. The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch Physiol Biochem. 2008;114(1):23–37.CrossRefPubMedGoogle Scholar
  27. 27.
    Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci. 2003;100(20):11285–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang B, Gui L, Zhao X, Zhu L, Li Q. FOXO1 is a tumor suppressor in cervical cancer. Genet Mol Res. 2015;14(2):6605–16.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Investig. 2001;108(8):1167–74.CrossRefPubMedGoogle Scholar
  30. 30.
    Bodmer M, Meier C, Krähenbühl S, Jick SS, Meier CR. Long-term metformin use is associated with decreased risk of breast cancer. Diabetes Care. 2010;33(6):1304–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.CrossRefPubMedGoogle Scholar
  32. 32.
    Karnevi E, Said K, Andersson R, Rosendahl AH. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer. 2013;13(1):235.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sarfstein R, Friedman Y, Attias-Geva Z, Fishman A, Bruchim I, Werner H. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or-independent manners. PLoS One. 2013;8(4):e61537.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Song J, Ren P, Zhang L, Wang XL, Chen L, Shen YH. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4. Biochem Biophys Res Commun. 2010;393(1):89–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Li X, Kover KL, Heruth DP, Watkins DJ, Moore WV, Jackson K, et al. New insight into metformin action: regulation of ChREBP and FoXO1 activities in endothelial cells. Mol Endocrinol. 2015;29(8):1184–94.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zatara G, Hertz R, Shaked M, Mayorek N, Morad E, Grad E, et al. Suppression of FoxO1 activity by long-chain fatty acyl analogs. Diabetes. 2011;60(7):1872–81.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barbato DL, Tatulli G, Aquilano K, Ciriolo M. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 2013;4(10):e861.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zahra Nozhat
    • 1
    • 2
  • Samira Mohammadi-Yeganeh
    • 1
  • Feridoun Azizi
    • 3
  • Maryam Zarkesh
    • 2
  • Mehdi Hedayati
    • 2
    Email author
  1. 1.Department of Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Cellular and Molecular Endocrine Research Center, Research Institute of Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Endocrine Research Center, Research Institute for Endocrine Sciences, School of MedicineShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations