Advertisement

Nano-SnO2 Decorated Carbon Cloth as Flexible, Self-supporting and Additive-Free Anode for Sodium/Lithium-Ion Batteries

  • 5 Accesses

Abstract

In this study, nano-sized SnO2 decorated on carbon cloth (SnO2/CC) is prepared through a simple and facile solid method. The nano-sized SnO2 is uniformly distributed on the surface of carbon fibers in carbon cloth, providing sufficient free space to relieve volume expansion and reduce electrode pulverization during cycling. The as-prepared SnO2/CC as a flexible, self-supporting and additive-free anode electrode for sodium-ion/lithium-ion batteries (SIBs/LIBs) can demonstrate outstanding electrochemical performance. SnO2/CC after annealing at 350 °C (SC-350) as an anode for SIBs can deliver a reversible capacity of 0.587 mA h cm−2 at the current density of 0.3 mA cm−2 after 100 cycles. In addition, when cycling at 1.5 mA cm−2, SC-350 can maintain 1.69 mA h cm−2 after 500 cycles when used as LIB anode. These results illustrate that the as-prepared SnO2/CC can be a promising flexible anode material for flexible SIBs/LIBs and provide a simple and practical method for designing new flexible electrode materials.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. [1]

    H. Cha, Y. Lee, J. Kim, M. Park, J. Cho, Adv. Energy Mater. 8, 1801917 (2018)

  2. [2]

    Z. Zhang, M. Liao, H. Lou, Y. Hu, X. Sun, H. Peng, Adv. Mater. 30, 1704261 (2018)

  3. [3]

    G. Zhou, F. Li, H.-M. Cheng, Energy Environ. Sci. 7, 1307 (2014)

  4. [4]

    Y. He, B. Matthews, J. Wang, L. Song, X. Wang, G. Wu, J. Mater. Chem. A 6, 735 (2018)

  5. [5]

    M. Feng, S. Wang, Y. Yu, Q. Feng, J. Yang, B. Zhang, Appl. Surf. Sci. 392, 27 (2017)

  6. [6]

    B. Ahmed, D.H. Anjum, Y. Gogotsi, H.N. Alshareef, Nano Energy 34, 249 (2017)

  7. [7]

    D.H. Liu, W.H. Li, Y.P. Zheng, Z. Cui, X. Yan, D.S. Liu, J. Wang, Y. Zhang, H.Y. Lu, F.Y. Bai, J.Z. Guo, X.L. Wu, Adv. Mater. 30, 1706317 (2018)

  8. [8]

    X.W. Huang, W.P. Xiao, L.Z. Zhao, J. Mol. Sci. 33, 313 (2017)

  9. [9]

    W.T. Zhang, D.H. Tang, Q.S. Huo, J. Mol. Sci. 33, 460 (2017)

  10. [10]

    S.Y. Liu, C.Y. Fan, Y.H. Shi, H.C. Wang, X.L. Wu, J.P. Zhang, A.C.S. Appl, Mater. Interfaces 10, 509 (2018)

  11. [11]

    Q.L. Ning, B.H. Hou, Y.Y. Wang, D.S. Liu, Z.Z. Luo, W.H. Li, Y. Yang, J.Z. Guo, X.L. Wu, A.C.S. Appl, Mater. Interfaces 10, 36902 (2018)

  12. [12]

    H.G. Wang, W. Li, D.P. Liu, X.L. Feng, J. Wang, X.Y. Yang, X.B. Zhang, Y. Zhu, Y. Zhang, Adv. Mater. 29, 1703012 (2017)

  13. [13]

    L. Xiao, H. Lu, Y. Fang, M.L. Sushko, Y. Cao, X. Ai, H. Yang, J. Liu, Adv. Energy Mater. 8, 1703238 (2018)

  14. [14]

    Y.X. Ren, T.S. Zhao, M. Liu, L. Wei, R.H. Zhang, Electrochim. Acta 242, 137 (2017)

  15. [15]

    P. Xu, G. Wang, J. Yan, Z. Zhang, M. Xu, S. Cai, X. Ruan, Z. Deng, Mater. Lett. 190, 56 (2017)

  16. [16]

    L.Y. Yang, H.Z. Li, L.Z. Cheng, S.T. Li, J. Liu, J. Min, K.J. Zhu, H. Wang, M. Lei, J. Alloys Compd. 726, 837 (2017)

  17. [17]

    L. Jabbour, R. Bongiovanni, D. Chaussy, C. Gerbaldi, D. Beneventi, Cellulose 20, 1523 (2013)

  18. [18]

    M. Jonoobi, R. Oladi, Y. Davoudpour, K. Oksman, A. Dufresne, Y. Hamzeh, R. Davoodi, Cellulose 22, 935 (2015)

  19. [19]

    S.H. Osong, S. Norgren, P. Engstrand, Cellulose 23, 93 (2015)

  20. [20]

    Q. Zhang, K. Zhou, J. Lei, W. Hu, Appl. Surf. Sci. 467–468, 992 (2019)

  21. [21]

    S. Xie, S. Liu, F. Cheng, X. Lu, ChemElectroChem 5, 571 (2018)

  22. [22]

    X. Chen, Y. Ma, Adv. Mater. Technol. 3, 1800041 (2018)

  23. [23]

    H.Y. Lü, X.H. Zhang, F. Wan, D.S. Liu, C.Y. Fan, H.M. Xu, G. Wang, X.L. Wu, A.C.S. Appl, Mater. Interfaces 9, 12518 (2017)

  24. [24]

    X. Gu, S. Wang, L. Wang, C. Wu, K. Xu, L. Zhao, Q. Liu, M. Ding, J. Xu, J. Nanosci. Nanotechnol. 19, 226 (2019)

  25. [25]

    L. Wang, X. Xie, K.N. Dinh, Q. Yan, J. Ma, Coord. Chem. Rev. 397, 138 (2019)

  26. [26]

    G.D. Park, J.-K. Lee, Y.C. Kang, Adv. Funct. Mater. 27, 1603399 (2017)

  27. [27]

    J. Qin, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, C. He, J. Mater. Chem. A 5, 10946 (2017)

  28. [28]

    P. Zheng, Z. Dai, Y. Zhang, K.N. Dinh, Y. Zheng, H. Fan, J. Yang, R. Dangol, B. Li, Y. Zong, Q. Yan, X. Liu, Nanoscale 9, 14820 (2017)

  29. [29]

    S. Qi, B. Xu, V.T. Tiong, J. Hu, J. Ma, Chem. Eng. J. 379, 122261 (2020)

  30. [30]

    M. Wu, B. Xu, Y. Zhang, S. Qi, W. Ni, J. Hu, J. Ma, Chem. Eng. J. 381, 122558 (2020)

  31. [31]

    D. Wu, C. Wang, M. Wu, Y. Chao, P. He, J. Ma, J. Energy Chem. 43, 24 (2020)

  32. [32]

    D. Liu, Z.J. Liu, X. Li, W. Xie, Q. Wang, Q. Liu, Y. Fu, D. He, Small 13, 1702000 (2017)

  33. [33]

    H.B. Wu, J.S. Chen, H.H. Hng, X.W. Lou, Nanoscale 4, 2526 (2012)

  34. [34]

    B. Zhang, G. Rousse, D. Foix, R. Dugas, D.A. Corte, J.M. Tarascon, Adv. Mater. 28, 9824 (2016)

  35. [35]

    Y. Xu, B. Peng, F.M. Mulder, Adv. Energy Mater. 8, 1701847 (2018)

  36. [36]

    X. Yang, R.Y. Zhang, J. Zhao, Z.X. Wei, D.X. Wang, X.F. Bie, Y. Gao, J. Wang, F. Du, G. Chen, Adv. Energy Mater. 8, 1701827 (2018)

  37. [37]

    B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y.S. Meng, T. Wang, J.Y. Lee, Adv. Mater. 26, 3854 (2014)

  38. [38]

    J.H. Kim, M.J. Jung, M.J. Kim, Y.S. Lee, J. Ind. Eng. Chem. 61, 368 (2018)

  39. [39]

    S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao, M. Yan, X. Liang, L. Mai, J. Feng, Y. Cao, X. Ai, H. Yang, J. Liu, Adv. Energy Mater. 7, 1700403 (2017)

  40. [40]

    D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li, T. Rojo, Adv. Energy Mater. 8, 1703268 (2018)

  41. [41]

    J.Z. Guo, Y. Yang, D.S. Liu, X.L. Wu, B.H. Hou, W.L. Pang, K.C. Huang, J.P. Zhang, Z.M. Su, Adv. Energy Mater. 8, 1702504 (2018)

  42. [42]

    J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Nano-Micro Lett. 10, 21 (2018)

  43. [43]

    M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, H.K. Liu, Angew. Chem. Int. Ed. 46, 750 (2007)

  44. [44]

    Y. Yang, X. Zhao, H.-E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao, J. Mater. Chem. A 6, 3479 (2018)

  45. [45]

    X.W. Lou, C.M. Li, L.A. Archer, Adv. Mater. 21, 2536 (2009)

  46. [46]

    X. Zhou, L.J. Wan, Y.G. Guo, Adv. Mater. 25, 2152 (2013)

  47. [47]

    D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, X. Fan, S.V. Savilov, J. Lin, H.J. Fan, Z.X. Shen, Nat. Commun. 7, 12122 (2016)

  48. [48]

    J.Z. Guo, P.F. Wang, X.L. Wu, X.H. Zhang, Q. Yan, H. Chen, J.P. Zhang, Y.G. Guo, Adv. Mater. 29, 1701968 (2017)

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 91963118) and the Fundamental Research Funds for the Central Universities (No. 2412019ZD010).

Author information

Correspondence to Haosen Fan or Guang Wang or Xing-Long Wu.

Additional information

Available online at http://link.springer.com/journal/40195.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44037 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, Y., Hou, B. et al. Nano-SnO2 Decorated Carbon Cloth as Flexible, Self-supporting and Additive-Free Anode for Sodium/Lithium-Ion Batteries. Acta Metall. Sin. (Engl. Lett.) (2020) doi:10.1007/s40195-020-01001-7

Download citation

Keywords

  • Flexible carbon cloth
  • SnO2 coating
  • Sodium/lithium-ion batteries