Advertisement

Application of Grain Boundary Engineering to Improve Intergranular Corrosion Resistance in a Fe–Cr–Mn–Mo–N High-Nitrogen and Nickel-Free Austenitic Stainless Steel

  • Feng Shi
  • Ruo-Han Gao
  • Xian-Jun Guan
  • Chun-Ming Liu
  • Xiao-Wu LiEmail author
Article
  • 5 Downloads

Abstract

Optimization of grain boundary engineering (GBE) process is explored in a Fe–20Cr–19Mn–2Mo–0.82 N high-nitrogen and nickel-free austenitic stainless steel, and its intergranular corrosion (IGC) property after GBE treatment is experimentally evaluated. The proportion of low Σ coincidence site lattice (CSL) boundaries reaches 79.4% in the sample processed with 5% cold rolling and annealing at 1423 K for 72 h; there is an increase of 32.1% compared with the solution-treated sample. After grain boundary character distribution optimization, IGC performance is noticeably improved. Only Σ3 boundaries in the special boundaries are resistant to IGC under the experimental condition. The size of grain cluster enlarges with increasing fraction of low ΣCSL boundaries, and the amount of Σ3 boundaries interrupting the random boundary network increases during growth of the clusters, which is the essential reason for the improvement of IGC resistance.

Keywords

High-nitrogen and nickel-free austenitic stainless steel Grain boundary engineering Electron backscatter diffraction (EBSD) Low Σ coincidence site lattice boundary Intergranular corrosion 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51871048 and 51571058).

References

  1. [1]
    T. Watanabe, Res. Mech. 11, 47 (1984)Google Scholar
  2. [2]
    G. Palumbo, P.J. King, K.T. Aust, U. Erb, P.C. Lichtenberger, Scr. Metall. Mater. 25, 1775 (1991)CrossRefGoogle Scholar
  3. [3]
    M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Acta Mater. 50, 2331 (2002)CrossRefGoogle Scholar
  4. [4]
    M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai, Acta Mater. 54, 5179 (2006)CrossRefGoogle Scholar
  5. [5]
    C.L. Hu, S. Xia, H. Li, T.G. Liu, B.X. Zhou, W.J. Chen, N. Wang, Corros. Sci. 53, 1880 (2011)CrossRefGoogle Scholar
  6. [6]
    K. Kurihara, H. Kokawa, S. Sato, Y.S. Sato, H.T. Fujii, M. Kawai, J. Mater. Sci. 46, 4270 (2011)CrossRefGoogle Scholar
  7. [7]
    S. Xia, H. Li, T.G. Liu, B.X. Zhou, J. Nucl. Mater. 416, 303 (2011)CrossRefGoogle Scholar
  8. [8]
    S.H. Kim, U. Erb, K.T. Aust, G. Palumbo, Scr. Mater. 44, 835 (2001)CrossRefGoogle Scholar
  9. [9]
    F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu, X.W. Li, Corros. Sci. 107, 49 (2016)CrossRefGoogle Scholar
  10. [10]
    T. Watanabe, S. Tsurekawa, Mater. Sci. Eng. A 387–389, 447 (2004)CrossRefGoogle Scholar
  11. [11]
    A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, V.K. Vasudevan, Acta Mater. 113, 180 (2016)CrossRefGoogle Scholar
  12. [12]
    S. Kobayashi, M. Hirata, S. Tsurekawa, T. Watanabe, Procedia Eng. 10, 112 (2011)CrossRefGoogle Scholar
  13. [13]
    Z. Zhuo, S. Xia, Q. Bai, B.X. Zhou, J. Mater. Sci. 53, 2844 (2018)CrossRefGoogle Scholar
  14. [14]
    W.Z. Jin, S. Yang, H. Kokawa, Z.J. Wang, Y.S. Sato, J. Mater. Sci. Technol. 23, 785 (2007)Google Scholar
  15. [15]
    J.W. Simmons, Mater. Sci. Eng. A 207, 159 (1996)CrossRefGoogle Scholar
  16. [16]
    H. Hänninen, J. Romu, R. Ilola, J. Tervo, A. Laitinen, J. Mater. Process. Technol. 117, 424 (2001)CrossRefGoogle Scholar
  17. [17]
    M.G. Pujar, U.K. Mudali, S.S. Singh, Corros. Sci. 53, 4178 (2011)CrossRefGoogle Scholar
  18. [18]
    H. Baba, T. Kodama, Y. Katada, Corros. Sci. 44, 2393 (2002)CrossRefGoogle Scholar
  19. [19]
    F. Shi, Y. Qi, C.M. Liu, J. Mater. Sci. Technol. 27, 1125 (2011)CrossRefGoogle Scholar
  20. [20]
    F. Shi, L.J. Wang, W.F. Cui, C.M. Liu, J. Iron Steel Res. Int. 15, 72 (2008)CrossRefGoogle Scholar
  21. [21]
    F. Vanderschaeve, R. Taillard, J. Foct, J. Mater. Sci. 30, 6035 (1995)CrossRefGoogle Scholar
  22. [22]
    O. Makoto, H. Kazuo, K. Yasuyuki, S. Masayuki, T. Susumu, ISIJ Int. 42, 1391 (2002)CrossRefGoogle Scholar
  23. [23]
    H.B. Li, Z.H. Jiang, Z.R. Zhang, Y. Cao, Y. Yang, Int. J. Min. Met. Mater. 16, 654 (2009)Google Scholar
  24. [24]
    R. Beneke, R.F. Sandenbergh, Corros. Sci. 29, 543 (1989)CrossRefGoogle Scholar
  25. [25]
    Y.S. Yoon, H.Y. Ha, T.H. Lee, S. Kim, Corros. Sci. 80, 28 (2014)CrossRefGoogle Scholar
  26. [26]
    K. Alvarez, S.K. Hyun, H. Tsuchiya, S. Fujimoto, H. Nakajima, Corros. Sci. 50, 183 (2008)CrossRefGoogle Scholar
  27. [27]
    H. Kokawa, W.Z. Jin, Z.J. Wang, M. Michiuchi, Y.S. Sato, W. Dong, Y. Katada, Mater. Sci. Forum 539–543, 4962 (2007)CrossRefGoogle Scholar
  28. [28]
    F. Shi, X.W. Li, Y.T. Hu, C. Su, C.M. Liu, Acta Metall. Sin. (Engl. Lett.) 26, 497 (2013)CrossRefGoogle Scholar
  29. [29]
    H.B. Li, Z.H. Jiang, Y. Yang, Y. Cao, Z.R. Zhang, Int. J. Min. Met. Mater. 16, 517 (2009)CrossRefGoogle Scholar
  30. [30]
    H.Y. Ha, T.H. Lee, J.H. Bae, D.W. Chun, Metals 8, 1 (2018)CrossRefGoogle Scholar
  31. [31]
    D.G. Brandon, Acta Metall. 14, 1479 (1966)CrossRefGoogle Scholar
  32. [32]
    F. Shi, X.W. Li, Y. Qi, C.M. Liu, Steel Res. Int. 84, 1034 (2013)Google Scholar
  33. [33]
    J.B. Lee, Corrosion 39, 469 (1983)CrossRefGoogle Scholar
  34. [34]
    S. Tokita, H. Kokawa, Y.S. Sato, H.T. Fujii, Mater. Charact. 131, 31 (2017)CrossRefGoogle Scholar
  35. [35]
    V. Randle, Acta Metall. Mater. 42, 1769 (1994)CrossRefGoogle Scholar
  36. [36]
    B.W. Reed, M. Kumar, Scr. Mater. 54, 1029 (2006)CrossRefGoogle Scholar
  37. [37]
    Q.Y. Li, J.R. Cahoon, N.L. Richards, Mater. Sci. Eng. A 527, 263 (2009)CrossRefGoogle Scholar
  38. [38]
    W. Wang, F. Brisset, A.L. Helbert, D. Solas, I. Drouelle, M.H. Mathon, T. Baudin, Mater. Sci. Eng. A 589, 112 (2014)CrossRefGoogle Scholar
  39. [39]
    X.J. Guan, F. Shi, H.M. Ji, X.W. Li, Mater. Sci. Eng. A 765, 138299 (2019)CrossRefGoogle Scholar
  40. [40]
    J. Kim, M. Kwon, B.C. De Cooman, Acta Mater. 141, 444 (2017)CrossRefGoogle Scholar
  41. [41]
    X.W. Li, X.M. Wu, Z.G. Wang, Y. Umakoshi, Metall. Mater. Trans. A 34, 307 (2003)CrossRefGoogle Scholar
  42. [42]
    Q.X. Dai, A.D. Wang, X.N. Cheng, J. Iron Steel Res. 14, 34 (2002)Google Scholar
  43. [43]
    V. Gavriljuk, Yu. Petrov, B. Shanina, Scr. Mater. 55, 537 (2006)CrossRefGoogle Scholar
  44. [44]
    R. Jones, V. Randle, Mater. Sci. Eng. A 527, 4275 (2010)CrossRefGoogle Scholar
  45. [45]
    X.Y. Fang, Ph.D. thesis, Shanghai University (2008)Google Scholar
  46. [46]
    M.S. Laws, P.J. Goodhew, Acta Metall. Mater. 39, 1525 (1991)CrossRefGoogle Scholar
  47. [47]
    V. Randle, Scr. Mater. 54, 1011 (2006)CrossRefGoogle Scholar
  48. [48]
    C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, M.L. Taheri, Acta Mater. 144, 281 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Feng Shi
    • 1
  • Ruo-Han Gao
    • 1
  • Xian-Jun Guan
    • 1
  • Chun-Ming Liu
    • 2
  • Xiao-Wu Li
    • 1
    • 2
    Email author
  1. 1.Department of Materials Physics and Chemistry, School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina

Personalised recommendations