Hot Deformation Behavior and Processing Maps of 0.3C–15Cr–1Mo–0.5N High Nitrogen Martensitic Stainless Steel

  • Xin Cai
  • Xiao-Qiang HuEmail author
  • Lei-Gang Zheng
  • Dian-Zhong Li


Hot deformation behavior of 0.3C–15Cr–1Mo–0.5N high nitrogen martensitic stainless steel (HNMSS) was investigated in the temperature range of 1173–1473 K and at strain rates of 0.001–10 s−1 using a Gleeble 3500 thermal–mechanical simulator. The true stress–strain curves of the studied HNMSS were measured and corrected to eliminate the effect of friction on the flow stress. The relationship between the flow stress and Zener–Hollomon parameter for the studied HNMSS was analyzed in the Arrhenius hyperbolic sine constitutive model by the law of \(Z = 3.76 \times 10^{15} \sinh \left( {0.004979\sigma_{\text{p}} } \right)^{7.5022}\). The processing maps at different strains of the studied HNMSS were plotted, and its flow instability regions in hot working were also confirmed in combination with the microstructure examination. Moreover, the optimal hot deformation parameters of the studied HNMSS could be suggested at T = 1303–1423 K and \(\dot{\varepsilon }\) = 5–10 s−1 or T = 1273–1473 K and \(\dot{\varepsilon }\) = 0.005–0.04 s−1.


High nitrogen martensitic stainless steel (HNMSS) Hot deformation Processing map Microstructure 



This research was supported by the National Natural Science Foundation of China (No. 51871212), the 2018 Regional Key Project on the Science and Technology Service from Shanghai Branch of Chinese Academy of Sciences (STS, SHBCAS) and the Supporting Project for STS, SHBCAS in Fujian Province.


  1. [1]
    J.W. Simmons, Mater. Sci. Eng. A 207, 159 (1996)CrossRefGoogle Scholar
  2. [2]
    J.Y. Li, Y.L. Chen, J.H. Huo, Mater. Sci. Eng. A 640, 16 (2015)CrossRefGoogle Scholar
  3. [3]
    W. Trojahn, E. Streit, H.A. Chin, D. Ehlert, Mater. Werkst. 30, 605 (1999)CrossRefGoogle Scholar
  4. [4]
    J. Gawlik, J. Schmidt, T. Nowak, Z. Wójcicki, A. Zagórski, Arch. Civ. Mech. Eng. 17, 926 (2017)CrossRefGoogle Scholar
  5. [5]
    G. Stein, I. Hucklenbroich, Adv. Manuf. Process. 19, 7 (2004)CrossRefGoogle Scholar
  6. [6]
    X.P. Ma, L.J. Wang, B. Qin, C.M. Liu, S.V. Subramanian, Mater. Des. 34, 74 (2012)CrossRefGoogle Scholar
  7. [7]
    R.C. Fan, M. Gao, Y.C. Ma, X.D. Zha, X.C. Hao, K. Liu, J. Mater. Sci. Technol. 28, 1059 (2012)CrossRefGoogle Scholar
  8. [8]
    X. Qi, H. Mao, Y. Yang, Corros. Sci. 120, 90 (2017)CrossRefGoogle Scholar
  9. [9]
    V. Prokoshkina, L. Kaputkina, A. Svyazhin, J. Siwka, Adv. Sci. Technol. 56, 116 (2008)CrossRefGoogle Scholar
  10. [10]
    L.M. Kaputkina, V.G. Prokoshkina, Mater. Sci. Eng. A 438, 228 (2006)CrossRefGoogle Scholar
  11. [11]
    Y.J. Zhang, H.U. Wei-Tao, J.T. Han, Trans. Mater. Heat Treat. 35, 203 (2014)Google Scholar
  12. [12]
    F.C. Ren, J. Chen, F. Chen, Trans. Nonferrous Met. Soc. China 24, 1407 (2014)CrossRefGoogle Scholar
  13. [13]
    A. Carosi, B. Kleimt, G. Paura, V. Diehl, J. Schmitz, V. Vodarek, Mastering P-ESR Technology for High Nitrogen Steel Grades for High Value Applications (Publication Office of European Union, Luxembourg, 2010), p. 114Google Scholar
  14. [14]
    R. Ebrahimi, A. Najafizadeh, J. Mater. Process. Technol. 152, 136 (2004)CrossRefGoogle Scholar
  15. [15]
    N. Yan, H.S. Di, H.Q. Huang, R.D.K. Misra, Y.G. Deng, Acta Metall. Sin. (Engl. Lett.) 32, 1021 (2019)CrossRefGoogle Scholar
  16. [16]
    F. Chen, Z. Cui, S. Chen, Mater. Sci. Eng. A 528, 5073 (2011)CrossRefGoogle Scholar
  17. [17]
    C.M. Sellars, Philos. Trans. R. Soc. Lond 288, 147 (1978)CrossRefGoogle Scholar
  18. [18]
    F. Chen, H. Wang, H. Zhu, H. Zhu, F. Ren, Z. Cui, J. Manuf. Process. 38, 223 (2019)CrossRefGoogle Scholar
  19. [19]
    A. Momeni, K. Dehghani, Mater. Sci. Eng. A 527, 5467 (2010)CrossRefGoogle Scholar
  20. [20]
    F. Ren, F. Chen, J. Chen, X. Tang, J. Manuf. Process. 31, 640 (2018)CrossRefGoogle Scholar
  21. [21]
    Z. Zeng, L. Chen, F. Zhu, X. Liu, J. Mater. Process. Technol. 27, 913 (2011)Google Scholar
  22. [22]
    G.R. Ebrahimi, H. Keshmiri, A.R. Maldad, A. Momeni, J. Mater. Sci. Technol. 28, 467 (2012)CrossRefGoogle Scholar
  23. [23]
    A. Najafizadeh, J.J. Jonas, G.R. Stewart, E.I. Poliak, Metall. Mater. Trans. A 37, 1899 (2006)CrossRefGoogle Scholar
  24. [24]
    H. Mirzadeh, A. Najafizadeh, Mater. Des. 31, 1174 (2010)CrossRefGoogle Scholar
  25. [25]
    A.M. Jorge Junior, O. Balancin, Mater. Res. 8, 309 (2005)CrossRefGoogle Scholar
  26. [26]
    H. Mirzadeh, A. Najafizadeh, ISIJ Int. 53, 680 (2013)CrossRefGoogle Scholar
  27. [27]
    L. Chen, W. Sun, J. Lin, G. Zhao, G. Wang, Results Phys. 12, 784 (2019)CrossRefGoogle Scholar
  28. [28]
    M. Avrami, J. Chem. Phys. 8, 1103 (1939)CrossRefGoogle Scholar
  29. [29]
    S.V.S.N. Murty, B.N. Rao, J. Mater. Sci. Lett. 17, 1203 (1998)CrossRefGoogle Scholar
  30. [30]
    S.V.S.N. Murty, B.N. Rao, B.P. Kashyap, Metall. Rev. 45, 15 (2014)CrossRefGoogle Scholar
  31. [31]
    Z. Yang, F. Zhang, C. Zheng, M. Zhang, B. Lv, L. Qu, Mater. Des. 66, 258 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Xin Cai
    • 1
  • Xiao-Qiang Hu
    • 1
    • 2
    Email author
  • Lei-Gang Zheng
    • 1
    • 2
  • Dian-Zhong Li
    • 1
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina

Personalised recommendations