Microstructure and Mechanical Properties of Nb- and Nb + Ti-Stabilised 18Cr–2Mo Ferritic Stainless Steels

  • Jian Han
  • Zhixiong ZhuEmail author
  • Gang Wei
  • Xingxu Jiang
  • Qian Wang
  • Yangchuan Cai
  • Zhengyi JiangEmail author


To explore the optimum use of stabilised elements and study the influences of stabilisation in 18Cr–2Mo grades, the Nb and Nb + Ti microalloying investigation focused on the relationships of the microstructure and mechanical properties of the microalloyed 18Cr–2Mo ferritic stainless steel thick plates. Thermo-Calc calculation was performed to predict the equilibrium phase diagrams. Afterwards, the microstructure, i.e. grain size and precipitation, of as-annealed specimens was analysed by means of optical microscopy, scanning electron microscopy and transmission electron microscopy, X-ray diffraction and energy-dispersive spectroscopy. Also, electron backscatter diffraction mapping was constructed to characterise grain boundary. The mechanical properties, including tensile strength and impact toughness, were tested to correlate with the microstructure. The results show that the grain sizes of Nb-stabilised steel are comparatively smaller, which is related to the fine precipitation at the grain boundaries and beneficial to the impact toughness. The increase in its strength is not apparent due to the inhomogeneous grain sizes. The grain boundary characters are similar, which is not the main factor related to their mechanical properties. When Ti is added, TiN forms above the liquidus, and large TiN particles evidently impair impact toughness.


Ferritic stainless steels Toughness Precipitation Microstructure 


  1. [1]
    Y. Shan, X. Luo, X. Hu, S. Liu, J. Mater. Sci. Technol. 27, 352 (2011)CrossRefGoogle Scholar
  2. [2]
    W. Du, L. Jiang, Q. Sun, Z. Liu, X. Zhang, J. Iron. Steel Res. Int. 17, 47 (2010)CrossRefGoogle Scholar
  3. [3]
    J. Shu, H. Bi, X. Li, Z. Xu, J. Mater. J. Mater. Process. Technol. 212, 59 (2012)CrossRefGoogle Scholar
  4. [4]
    H.F.G. De Abreu, A.D.S. Bruno, S.S.M. Tavares, R.P. Santos, S.S. Carvalho, Mater. Charact. 57, 342 (2006)CrossRefGoogle Scholar
  5. [5]
    R. Paton, ISIJ Int. 38, 1007 (1998)CrossRefGoogle Scholar
  6. [6]
    J. Han, H. Li, H. Xu, Mater. Des. 58, 518 (2014)CrossRefGoogle Scholar
  7. [7]
    A.C.T.M. Van Zwieten, J.H. Bulloch, Int. J. Press. Vessels Pip. 56, 69 (1993)CrossRefGoogle Scholar
  8. [8]
    A.C.T.M. Van Zwieten, J.H. Bulloch, Int. J. Press. Vessels Pip. 56, 1 (1993)CrossRefGoogle Scholar
  9. [9]
    F. Gao, Z. Liu, H. Liu, G. Wang, J. Alloys Compd. 567, 141 (2013)CrossRefGoogle Scholar
  10. [10]
    J.D. Gates, R.A. Jago, Mater. Sci. Technol. 3, 450 (1987)CrossRefGoogle Scholar
  11. [11]
    V. Kuzucu, M. Aksoy, M.H. Korkut, M.M. Yildirim, Mater. Sci. Eng. A 230, 75 (1997)CrossRefGoogle Scholar
  12. [12]
    M. Aksoy, V. Kuzucu, M.H. Korkut, M.M. Yildirim, J. Mater. Process. Technol. 91, 172 (1999)CrossRefGoogle Scholar
  13. [13]
    D. Min, S. Liu, H. Hong, P. Tao, P. Zhang, Mater. Des. 52, 353 (2013)CrossRefGoogle Scholar
  14. [14]
    J. Du, M. Strangwood, C.L. Davis, J. Mater. Sci. Technol. 28, 878 (2012)CrossRefGoogle Scholar
  15. [15]
    I.M. Wolff, A. Ball, Acta Metall. Mater. 39, 2759 (1991)CrossRefGoogle Scholar
  16. [16]
    S. Anttila, L.P. Karjalainen, D. Porter, Mater. Sci. Forum 762, 562 (2013)CrossRefGoogle Scholar
  17. [17]
    W. Yan, Y.Y. Shan, K. Yang, Metall. Mater. Trans. A 38, 1211 (2007)CrossRefGoogle Scholar
  18. [18]
    W. Gordon, A. van Bennekom, Mater. Sci. Technol. 12, 126 (1996)CrossRefGoogle Scholar
  19. [19]
    M.A.A. Tullmin, M.J. Witcomb, M.B. Cortie, F.P.A. Robinson, Br. Corros. J. 25, 191 (1990)CrossRefGoogle Scholar
  20. [20]
    L. Ma, J. Han, J. Shen, S. Hu, Acta Metall. Sin. (Eng. Lett.) 7, 407 (2014)CrossRefGoogle Scholar
  21. [21]
    B. Mintz, J. Kolahi-Aval, Mater. Sci. Technol. 2, 1046 (1986)CrossRefGoogle Scholar
  22. [22]
    O. Yoo, Y.J. Oh, B.S. Lee, S.W. Nam, Mater. Sci. Eng. A 405, 147 (2005)CrossRefGoogle Scholar
  23. [23]
    H.K. Danielsen, J. Hald, Z-phase in 9–12% Cr Steels (Technical University of Denmark, 2005)Google Scholar
  24. [24]
    A. Kashiwar, N.P. Vennela, S.L. Kamath, R.K. Khatirkar, Mater. Charact. 74, 55 (2012)CrossRefGoogle Scholar
  25. [25]
    D.M. Escriba, E. Materna-Morris, R.L. Plaut, A.F. Padilha, Mater. Charact. 60, 1214 (2009)CrossRefGoogle Scholar
  26. [26]
    M.P. Sello, W.E. Stumpf, Mater. Sci. Eng. A 527, 5194 (2010)CrossRefGoogle Scholar
  27. [27]
    H. Yan, H. Bi, X. Li, Z. Xu, Mater. Charact. 60, 204 (2009)CrossRefGoogle Scholar
  28. [28]
    K. Tokuno, K. Hamada, R. Uemori, T. Takeda, K. Itoh, Scr. Metall. Mater. 25, 871 (1991)CrossRefGoogle Scholar
  29. [29]
    T. Gladman, The Physical Metallurgy of Microalloyed Steels (Maney Publishing, Leeds, 2002)Google Scholar
  30. [30]
    J. Han, H.J. Li, Z.X. Zhu, F. Barbaro, L.Z. Jiang, H.G. Xu, L. Ma, Mater. Des. 63, 238 (2014)CrossRefGoogle Scholar
  31. [31]
    N.J. Petch, Philos. Mag. 3, 1089 (1958)CrossRefGoogle Scholar
  32. [32]
    Q.L. Yong, Second Phase in Steel Materials (Metallurgical Industry Press, Beijing, 2006)Google Scholar
  33. [33]
    L. Ma, S.S. Hu, J.Q. Shen, J. Han, Z.X. Zhu, J. Mater. Sci. Technol. 32, 552–560 (2016)CrossRefGoogle Scholar
  34. [34]
    T. Watanabe, S. Tsurekawa, Acta Mater. 47, 4171 (1999)CrossRefGoogle Scholar
  35. [35]
    J. Han, H.J. Li, Z.X. Zhu, L.Z. Jiang, H.G. Xu, L. Ma, Mater. Sci. Eng. A 616, 20 (2014)CrossRefGoogle Scholar
  36. [36]
    T. Watanabe, T. Hirano, T. Ochiai, H. Oikawa, Mater. Sci. Forum 157, 1103 (1994)CrossRefGoogle Scholar
  37. [37]
    J. Moon, C. Lee, S. Uhm, J. Lee, Acta Mater. 54, 1053 (2006)CrossRefGoogle Scholar
  38. [38]
    P. Ghosh, R.K. Ray, C. Ghosh, D. Bhattacharjee, Scr. Mater. 58, 939 (2008)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  3. 3.School of Mechanical Engineering and AutomationUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations