Advertisement

Ultra-fine-Grained Ferrite Prepared from Dynamic Reversal Austenite During Warm Deformation

  • Hong-Bin Li
  • Ming-Song ChenEmail author
  • Ya-Qiang Tian
  • Lian-Sheng ChenEmail author
  • Li-Qing Chen
Article
  • 23 Downloads

Abstract

The ultra-fine-grained ferrite (UFGF) with the size of less than 1 μm is often difficult to be obtained for low-alloyed steel in practical production processing. In this study, considering the rod and wire production process, a new method for preparing the UFGF with submicron scale is proposed by warm deformation of six passes with total strain of 2.6, followed by the cooling process in Gleeble-3500 thermo-mechanical simulator. The results show that the UFGF with an average size of 0.64 μm could be obtained via the phase transformation from austenite grains with an average size of 3.4 μm, which are achieved by the deformation-induced reversal austenization during the high strain rate warm deformation. The main driving force for the reversal transformation is the stress. And the interval between the passes also plays an important role in the reversal austenization.

Keywords

Ultra-fine-grained ferrite Dynamic reversal transformation (DRT) Warm deformation Deformation-induced reversal transformation Cooling process 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51574107, 51501056, 51975593), the Natural Science Foundation of Hebei Province (Grant Nos. E2015209243, E2017209048), the Liaoning Provincial Natural Science Foundation of China (Grant No. 2019-KF-25-01), and the Research Funds from Department of Education of Hebei Province (Grant Nos. QN2019051, ZD 2019064).

References

  1. [1]
    M.H. Cai, H.S. Huang, J.H. Su, H. Ding, P.D. Hodgson, J. Mater. Sci. Technol. 34, 1428 (2018)CrossRefGoogle Scholar
  2. [2]
    Y. Shao, C.X. Liu, Z.S. Yan, H.J. Li, Y.C. Liu, J. Mater. Sci. Technol. 34, 737 (2018)CrossRefGoogle Scholar
  3. [3]
    D.G. He, Y.C. Lin, J. Chen, D.D. Chen, J. Huang, Y. Tang, M.S. Chen, Mater. Des. 154, 51 (2018)CrossRefGoogle Scholar
  4. [4]
    L.J. Zhao, N. Park, Y.Z. Tian, A. Shibata, N. Tsuji, Adv. Eng. Mater. 1701016, 1 (2018)Google Scholar
  5. [5]
    X.Y. Hu, H.L. Zhao, S. Ni, M. Song, Mater. Charact. 129, 149 (2017)CrossRefGoogle Scholar
  6. [6]
    H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, H. Dong, Acta Mater. 59, 4002 (2011)CrossRefGoogle Scholar
  7. [7]
    N. Tsuji, T. Maki, Scr. Mater. 60, 1044 (2009)CrossRefGoogle Scholar
  8. [8]
    M.K. Pathak, A. Joshi, K.K.S. Mer, R. Jayaganthan, Acta Metall. Sin. (Engl. Lett.) 32, 845 (2019)CrossRefGoogle Scholar
  9. [9]
    B. Hu, B.B. He, G.J. Cheng, H.W. Yen, M.X. Huang, H.W. Luo, Acta Mater. 174, 131 (2019)CrossRefGoogle Scholar
  10. [10]
    S.J. Yao, L.X. Du, X.H. Liu, G.D. Wang, J. Mater. Sci. Technol. 25, 81 (2009)Google Scholar
  11. [11]
    Z. Yanushkevich, A. Belyakov, R. Kaibyshev, C. Haase, D.A. Molodov, Mater. Charact. 112, 180 (2016)CrossRefGoogle Scholar
  12. [12]
    F. Yang, H.W. Luo, C.D. Hu, E.X. Pu, H. Dong, Mater. Sci. Eng. A 685, 115 (2017)CrossRefGoogle Scholar
  13. [13]
    S. Lee, B.C.D. Cooman, Metall. Mater. Trans. A 45, 5009 (2014)CrossRefGoogle Scholar
  14. [14]
    P.P. Chatterjee, S.K. Pabi, I. Manna, J. Appl. Phys. 86, 5912 (1999)CrossRefGoogle Scholar
  15. [15]
    S.J. Yao, L.X. Du, X.H. Liu, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 21, 391 (2008)CrossRefGoogle Scholar
  16. [16]
    J.J. Sun, T. Jiang, Y.J. Wang, S.W. Guo, Y.N. Liu, Mater. Sci. Eng. A 726, 342 (2018)CrossRefGoogle Scholar
  17. [17]
    Y.Y. Song, X.Y. Li, L.J. Rong, D.H. Ping, F.X. Yin, Y.Y. Li, Mater. Lett. 64, 1411 (2010)CrossRefGoogle Scholar
  18. [18]
    B. Hu, H.W. Luo, Acta Mater. 176, 250 (2019)CrossRefGoogle Scholar
  19. [19]
    G.W. Yang, Z.D. Li, X.J. Sun, X. Yong, Q.L. Yong, J. Iron. Steel Res. Int. 20, 64 (2013)CrossRefGoogle Scholar
  20. [20]
    X.J. Shen, S. Tang, J. Chen, Z.Y. Liu, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 671, 182 (2016)CrossRefGoogle Scholar
  21. [21]
    A.S. Alghamdi, I.A. Ashcroft, M. Song, D.Y. Cai, Poly. Test. 32, 1502 (2013)CrossRefGoogle Scholar
  22. [22]
    J. Trzaska, L.A. Dobrzanski, J. Mater. Proc. Technol. 192–193, 504 (2007)CrossRefGoogle Scholar
  23. [23]
    C. Aranas Jr., T. Nguyen-Minh, R. Grewal, J.J. Jonas, ISIJ Int. 55, 300 (2015)CrossRefGoogle Scholar
  24. [24]
    J.J. Jonas, C. Ghosh, Acta Mater. 61, 6125 (2013)CrossRefGoogle Scholar
  25. [25]
    C. Aranas Jr., A. Foul, B.Q. Guo, A. Fall, M. Jahazi, J.J. Jonas, Scr. Mater. 133, 83 (2017)CrossRefGoogle Scholar
  26. [26]
    L.J. Zhao, N. Park, Y.Z. Tian, A.S.N. Tsuji, Mater. Res. Lett. 6, 641 (2018)CrossRefGoogle Scholar
  27. [27]
    C. Ghosh, C. Aranas Jr., J.J. Jonas, Prog. Mater. Sci. 82, 151 (2016)CrossRefGoogle Scholar
  28. [28]
    N. Hansen, X. Huang, G. Winther, Mater. Sci. Eng. A 494, 61 (2008)CrossRefGoogle Scholar
  29. [29]
    C. Ouchi, T. Sampei, I. Kozasu, Trans. ISIJ 22, 214 (1982)CrossRefGoogle Scholar
  30. [30]
    H.B. Li, X.P. Zheng, D.C. Wan, L.S. Chen, J. Iron. Steel Res. Int. 26, 602 (2019)CrossRefGoogle Scholar
  31. [31]
    H.P. Li, R. Jiang, L.F. He, H. Yang, C. Wang, C.Z. Zhang, Acta Metall. Sin. (Engl. Lett.) 31, 33 (2018)CrossRefGoogle Scholar
  32. [32]
    H.K. Dong, H. Chen, W. Wang, Y.J. Zhang, G. Miyamoto, T. Furuhara, C. Zhang, Z.G. Yang, S.V.D. Zwaag, Acta Mater. 158, 167 (2018)CrossRefGoogle Scholar
  33. [33]
    C.Y. Zhang, H. Chen, J.N. Zhu, W.B. Liu, G. Liu, C. Zhang, Z.G. Yang, Scr. Mater. 162, 44 (2019)CrossRefGoogle Scholar
  34. [34]
    S.J. Song, W.K. Che, J.B. Zhang, L.K. Huang, S.Y. Duan, F. Liu, J. Mater. Sci. Technol. 35, 1753 (2019)CrossRefGoogle Scholar
  35. [35]
    J.G. Chen, C.X. Liu, W. Chen, Y.C. Liu, H.J. Li, Acta Metall. Sin. (Engl. Lett.) 32, 1151 (2019)CrossRefGoogle Scholar
  36. [36]
    L.H. Hao, N.M. Xiao, C.W. Zheng, D.Z. Li, J. Mater. Sci. Technol. 26, 1107 (2010)CrossRefGoogle Scholar
  37. [37]
    C. Zhang, L. Cui, Y.C. Liu, C.X. Liu, H.J. Li, J. Mater. Sci. Technol. 34, 756 (2018)CrossRefGoogle Scholar
  38. [38]
    C. Prasad, P. Bhuyan, C. Kaithwas, R. Saha, S. Mandal, Mater. Des. 139, 324 (2018)CrossRefGoogle Scholar
  39. [39]
    H. Rastegari, A. Kermanpur, A. Najafizadeh, M.C. Somani, D.A. Porter, E. Ghassemali, A.E.W. Jarfors, Mater. Sci. Eng. A 658, 167 (2016)CrossRefGoogle Scholar
  40. [40]
    G. Miyamoto, H. Usuki, Z.D. Li, T. Furuhara, Acta Mater. 58, 4492 (2010)CrossRefGoogle Scholar
  41. [41]
    H.W. Luo, C.H. Qiu, H. Dong, J. Shi, J. Mater. Sci. Technol. 30, 1367 (2014)CrossRefGoogle Scholar
  42. [42]
    Z.D. Li, Z.G. Yang, C. Zhang, Z.Q. Liu, Mater. Sci. Eng. A 527, 4406 (2010)CrossRefGoogle Scholar
  43. [43]
    B.X. Wang, X.H. Liu, G.D. Wang, Mater. Des. 30, 2198 (2009)CrossRefGoogle Scholar
  44. [44]
    B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Scr. Mater. 152, 132 (2018)CrossRefGoogle Scholar
  45. [45]
    B. Li, Q.Y. Liu, S.J. Jia, Y. Ren, B. Wang, Acta Metall. Sin. (Engl. Lett.) 31, 1038 (2018)CrossRefGoogle Scholar
  46. [46]
    Y. Okisu, N. Takata, N. Tsuji, Scr. Mater. 60, 76 (2009)CrossRefGoogle Scholar
  47. [47]
    K. Hase, N. Tsuji, Scr. Mater. 65, 404 (2011)CrossRefGoogle Scholar
  48. [48]
    P. Uranga, A.I. Fernandez, B. Lopez, J.M. Rodriguez-Ibabe, Mater. Sci. Eng. A 345, 319 (2003)CrossRefGoogle Scholar
  49. [49]
    L. Cheng, Y.L. Chen, Q.W. Cai, W. Yu, G. Han, E.T. Dong, X. Li, Mater. Sci. Eng. A 68, 117 (2017)CrossRefGoogle Scholar
  50. [50]
    A. Imandoust, A. Zarei-Hanzaki, H.R. Abedi, Scr. Mater. 67, 995 (2012)CrossRefGoogle Scholar
  51. [51]
    X.Z. Chen, Y.M. Huang, J. Alloys Compd. 619, 564 (2015)CrossRefGoogle Scholar
  52. [52]
    P. Gong, E.J. Palmiere, W.M. Rainforth, Acta Mater. 119, 43 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Metallurgy and EnergyNorth China University of Science and TechnologyTangshanChina
  2. 2.School of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina
  3. 3.Key Laboratory of the Ministry of Education for Modern Metallurgy TechnologyTangshanChina
  4. 4.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina

Personalised recommendations