Advertisement

Temperature Effects on the Microstructures of Mg–Gd–Y Alloy Processed by Multi-direction Impact Forging

  • S. S. A. Shah
  • D. Wu
  • R. S. ChenEmail author
  • G. S. SongEmail author
Article
  • 19 Downloads

Abstract

A high strain rate multi-directional impact forging (MDIF) was applied to a solutionized Mg–Gd–Y–Zr alloy in the temperature range of 350–500 °C. Results demonstrate that the dominant deformation mode is twinning at a temperature below 400 °C, whereas at a medium temperature of 450 °C considerable continuous dynamic recrystallization was promoted by {10–12} extension twins. At a higher temperature of 500 °C, twinning activation was suppressed. New DRX grains were observed but their sizes were much bigger than those resulting from the MDIFed 50 passes at 450 °C, which are ascribed to the larger grain boundary mobility and atomic diffusion at 500 °C. Moreover, a non-basal weak texture was gained afterward MDIF at each temperature, which is credited to the MDIF process and the minor strain applied in each pass.

Keywords

Magnesium alloys Twinning Dynamic recrystallization Forging Texture 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0301104), the National Natural Science Foundation of China (NSFC, Nos. 51301173, 51531002 and 51601193), and the National Basic Research Program of China (973 Program, No. 2013CB632202).

References

  1. [1]
    S. Zhu, H. Yan, X. Liao, S. Moody, G. Sha, Y. Wu, S. Ringer, Acta Mater. 82, 344 (2015)CrossRefGoogle Scholar
  2. [2]
    H.E. Friedrich, B.L. Mordike, Magnesium Technology: Metallurgy, Design Data, Applications (Springer, Berlin, 2006), p. 207Google Scholar
  3. [3]
    S. Shah, M. Jiang, D. Wu, U. Wasi, R. Chen, Acta Metall. Sin. (Engl. Lett.) 31, 923 (2018)CrossRefGoogle Scholar
  4. [4]
    M. Jiang, C. Xu, H. Yan, G. Fan, T. Nakata, C. Lao, R. Chen, S. Kamado, E. Han, B. Lu, Acta Mater. 157, 53 (2018)CrossRefGoogle Scholar
  5. [5]
    M. Hong, S. Shah, D. Wu, R. Chen, X. Du, N. Hu, Y. Zhang, Met. Mater. Int. 22, 1091 (2016)CrossRefGoogle Scholar
  6. [6]
    L. Li, Mater. Sci. Eng. A 528, 7178 (2011)CrossRefGoogle Scholar
  7. [7]
    T. Peng, Q. Wang, J. Lin, M. Liu, H.J. Roven, Mater. Sci. Eng. A 528, 1143 (2011)CrossRefGoogle Scholar
  8. [8]
    S. Shah, D. Wu, W. Wang, R. Chen, Mater. Sci. Eng. A 702, 153 (2017)CrossRefGoogle Scholar
  9. [9]
    T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61, 644 (2009)CrossRefGoogle Scholar
  10. [10]
    C. Xu, S. Xu, M. Zheng, K. Wu, E. Wang, S. Kamado, G. Wang, X. Lv, J. Alloys Compd. 524, 46 (2012)CrossRefGoogle Scholar
  11. [11]
    C. Xu, M. Zheng, S. Xu, K. Wu, E. Wang, S. Kamado, G. Wang, X. Lv, Mater. Sci. Eng. A 547, 93 (2012)CrossRefGoogle Scholar
  12. [12]
    H. Zhang, S. Chen, M. Cheng, C. Zheng, S. Zhang, Acta Metall. Sin. (Engl. Lett.) 32, 1122 (2019)CrossRefGoogle Scholar
  13. [13]
    Z.J. Yu, C. Xu, J. Meng, K. Liu, J.L. Fu, S. Kamado, Mater. Sci. Eng. A 762, 138080 (2019)CrossRefGoogle Scholar
  14. [14]
    K. Wang, J. Wang, X. Peng, S. Gao, H. Hu, L. Zeng, F. Pan, Mater. Sci. Eng. A 748, 100 (2019)CrossRefGoogle Scholar
  15. [15]
    H. Miura, T. Maruoka, X. Yang, J. Jonas, Scr. Mater. 66, 49 (2012)CrossRefGoogle Scholar
  16. [16]
    M. Jiang, H. Yan, R. Chen, J. Alloys Compd. 650, 399 (2015)CrossRefGoogle Scholar
  17. [17]
    M. Jiang, H. Yan, R. Chen, Mater. Sci. Eng. A 621, 204 (2015)CrossRefGoogle Scholar
  18. [18]
    Y. Wu, H. Yan, J. Chen, Y. Du, S. Zhu, B. Su, Mater. Sci. Eng. A 556, 164 (2012)CrossRefGoogle Scholar
  19. [19]
    L. Tang, C. Liu, Z. Chen, D. Ji, H. Xiao, Mater. Des. 50, 587 (2013)CrossRefGoogle Scholar
  20. [20]
    S.Q. Zhu, H.G. Yan, J.H. Chen, Y.Z. Wu, J.Z. Liu, J. Tian, Scr. Mater. 63, 985 (2010)CrossRefGoogle Scholar
  21. [21]
    L. Gao, R. Chen, E. Han, Mater. Sci. 44, 4443 (2009)CrossRefGoogle Scholar
  22. [22]
    J.L. Li, N. Zhang, X.X. Wang, D. Wu, R.S. Chen, Acta Metall. Sin. (Engl. Lett.) 31, 189 (2018)CrossRefGoogle Scholar
  23. [23]
    A. Kaya, Fundam. Magnes. Alloy Metall. 33, 35 (2013)Google Scholar
  24. [24]
    M. Barnett, Z. Keshavarz, X. Ma, Metall. Mater. Trans. A 37, 2283 (2006)CrossRefGoogle Scholar
  25. [25]
    M.D. Nave, M.R. Barnett, Scr. Mater. 51, 881 (2004)CrossRefGoogle Scholar
  26. [26]
    T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, S. Suwas, Acta Mater. 60, 537 (2012)CrossRefGoogle Scholar
  27. [27]
    L. Lu, J. Zhao, L. Liu, G. Wang, Mater. Sci. Technol. 32, 104 (2016)CrossRefGoogle Scholar
  28. [28]
    I. Basu, T. Al-Samman, Acta Mater. 96, 111 (2015)CrossRefGoogle Scholar
  29. [29]
    J.W. Christian, S. Mahajan, Prog. Mater Sci. 39, 96 (1995)CrossRefGoogle Scholar
  30. [30]
    X. Xia, Q. Chen, Z. Zhao, M. Ma, X. Li, K. Zhang, J. Alloys Compd. 623, 62 (2015)CrossRefGoogle Scholar
  31. [31]
    D. Wu, R. Chen, W. Tang, E. Han, Mater. Des. 41, 306 (2012)CrossRefGoogle Scholar
  32. [32]
    X.Y. Yang, Z.S. Ji, H. Miura, T. Sakai, Trans. Nonferrous Met. Soc. China 19, 55 (2009)CrossRefGoogle Scholar
  33. [33]
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2055 (2003)CrossRefGoogle Scholar
  34. [34]
    X. Li, P. Yang, L.N. Wang, L. Meng, F. Cui, Mater. Sci. Eng. A 517, 160 (2009)CrossRefGoogle Scholar
  35. [35]
    Y. Xin, H. Zhou, H. Yu, R. Hong, H. Zhang, Q. Liu, Mater. Sci. Eng. A 622, 178 (2015)CrossRefGoogle Scholar
  36. [36]
    P. Changizian, A. Zarei-Hanzaki, H. Abedi, Mater. Sci. Eng. A 558, 44 (2012)CrossRefGoogle Scholar
  37. [37]
    L. Priester, Epilogue (Springer, Dordrecht, 2013), p. 217Google Scholar
  38. [38]
    J. Zhang, Y. Dou, Y. Zheng, Scr. Mater. 80, 17 (2014)CrossRefGoogle Scholar
  39. [39]
    M. Bugnet, A. Kula, M. Niewczas, G. Botton, Acta Mater. 79, 66 (2014)CrossRefGoogle Scholar
  40. [40]
    I. Basu, K. Pradeep, C. Mießen, L. Barrales-Mora, T. Al-Samman, Acta Mater. 116, 77 (2016)CrossRefGoogle Scholar
  41. [41]
    J. Koike, Metall. Mater. Trans. A 36, 1689 (2005)CrossRefGoogle Scholar
  42. [42]
    M. Barnett, Z. Keshavarz, A. Beer, D. Atwell, Acta Mater. 52, 5093 (2004)CrossRefGoogle Scholar
  43. [43]
    J. Sun, P. Trimby, F. Yan, X. Liao, N. Tao, J. Wang, Acta Mater. 79, 47 (2014)CrossRefGoogle Scholar
  44. [44]
    Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, A.M. Minor, Nano Lett. 12, 887 (2012)CrossRefGoogle Scholar
  45. [45]
    A. Ghaderi, M.R. Barnett, Acta Mater. 59, 7824 (2011)CrossRefGoogle Scholar
  46. [46]
    M.O. Pekguleryuz, K. Kainer, A.A. Kaya, Fundam. Magnes. Alloy. Metall. 33, 35 (2013)Google Scholar
  47. [47]
    J. Del Valle, M.T. Pérez-Prado, O. Ruano, Mater. Sci. Eng. A 355, 68 (2003)CrossRefGoogle Scholar
  48. [48]
    J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki, K. Maruyama, Mater. Trans. 44, 445 (2003)CrossRefGoogle Scholar
  49. [49]
    B. Shi, R. Chen, W. Ke, Mater. Sci. Eng. A 560, 62 (2013)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringAnhui University of TechnologyMa’anshanChina
  2. 2.The Group of Magnesium Alloys and Their Applications, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations