Relationship Between Microstructures and Microhardness in High-Speed Friction Stir Welding of AA6005A-T6 Aluminum Hollow Extrusions

  • Xiang-Qian LiuEmail author
  • Hui-Jie Liu
  • Yan Yu


AA6005A-T6 aluminum hollow extrusions were friction stir welded at a fixed high welding speed of 2000 mm/min and various rotation speeds. The results showed that the heat-affected zone (HAZ) retained the similar grain structure as the base material except some grain coarsening, and the density of dislocations and β′ precipitates were almost unchanged, indicating that the high welding speed inhibited the coarsening and dissolution of β″ precipitates via fast cooling rate. The thermo-mechanically affected zone (TMAZ) was characterized by elongated and rotated grains, in which a low density of β′ precipitates and the highest density of dislocations were observed. The highest heat input and severest plastic deformation occurring in the nugget zone (NZ) resulted in the occurrence of dynamic recrystallization and a high density of dislocations. Hence, all the β″ precipitates and most of the β′ precipitates dissolved into the matrix, and a few β′ precipitates were transformed into β precipitates. The microhardness was controlled by the precipitation and solution strengthening in the HAZ, by the dislocation and precipitation strengthening in the TMAZ, and by the fine-grain and dislocation strengthening in the NZ. With the increase in rotation speed, the peak and the lowest microhardness value increased monotonously.


Aluminum hollow extrusions High-speed friction stir welding Grain structure Dislocation and precipitates Microhardness distribution 



This work was supported by the National Natural Science Foundation of China (Nos. 51435004, 51175117, U1404502) and the National Science and Technology Major Project of China (No. 2010ZX04007-011).


  1. [1]
    X. Lu, C.S. Zhang, G.Q. Zhao, Y.J. Guan, L. Chen, A.J. Gao, Mater. Design 89, 737 (2016)CrossRefGoogle Scholar
  2. [2]
    T. Kawasaki, T. Makino, K. Masai, H. Ohba, Y. Ina, E. Masakuni, JSME Int. J. 47, 502 (2004)CrossRefGoogle Scholar
  3. [3]
    G. Liu, L.N. Ma, Z.D. Ma, X.S. Fu, G.B. Wei, Y. Yang, T.C. Xu, W.D. Xie, X.D. Peng, Acta Metall. Sin. (Engl. Lett.) 31, 853 (2018)CrossRefGoogle Scholar
  4. [4]
    G.K. Padhy, C.S. Wu, S. Gao, J. Mater. Sci. Technol. 34, 1 (2018)CrossRefGoogle Scholar
  5. [5]
    A. Alessandro, J. Carstensen, J.F. dos Santos, J. Mater. Sci. Technol. 34, 119 (2018)CrossRefGoogle Scholar
  6. [6]
    J.W. Qian, J.L. Li, F. Sun, J.T. Xiong, F.S. Zhang, X. Lin, Scr. Mater. 68, 175 (2013)CrossRefGoogle Scholar
  7. [7]
    V. Dixit, R.S. Mishra, R.J. Lederich, R. Talwar, Sci. Technol. Weld. Join. 12, 334 (2007)CrossRefGoogle Scholar
  8. [8]
    P. Dong, H.M. Li, D.Q. Sun, W.B. Gong, J. Liu, Mater. Design 45, 524 (2013)CrossRefGoogle Scholar
  9. [9]
    Z. Zhang, B.L. Xiao, Z.Y. Ma, Mater. Charact. 106, 255 (2015)CrossRefGoogle Scholar
  10. [10]
    S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, R. Kaibyshev, Mater. Sci. Eng. A 662, 136 (2016)CrossRefGoogle Scholar
  11. [11]
    A.H. Feng, D.L. Chen, Z.Y. Ma, W.Y. Ma, R.J. Song, Acta Metall. Sin. (Engl. Lett.) 27, 723 (2014)CrossRefGoogle Scholar
  12. [12]
    D. Rao, K. Huber, J. Heerens, J.F. dos Santos, N. Huber, Mater. Sci. Eng. A 565, 44 (2013)CrossRefGoogle Scholar
  13. [13]
    H.J. Liu, X.Q. Liu, X.G. Wang, T.H. Wang, S. Yang, Int. J. Adv. Manuf. Technol. 88, 3139 (2017)CrossRefGoogle Scholar
  14. [14]
    X.Q. Liu, H.J. Liu, T.H. Wang, X.G. Wang, S. Yang, J. Mater. Sci. Technol. 34, 102 (2018)CrossRefGoogle Scholar
  15. [15]
    C.Y. Liu, B. Qu, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, R.P. Liu, J. Mater. Sci. Technol. 34, 112 (2018)CrossRefGoogle Scholar
  16. [16]
    S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Træholt, U. Tundal, O. Reiso, Acta Mater. 46, 3283 (1998)CrossRefGoogle Scholar
  17. [17]
    R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, Acta Mater. 55, 3815 (2007)CrossRefGoogle Scholar
  18. [18]
    M.H. Jacobs, Philos. Mag. A 26, 1 (1972)CrossRefGoogle Scholar
  19. [19]
    Y.S. Sato, M. Urata, H. Kokawa, Metall. Mater. Trans. A 33, 625 (2002)CrossRefGoogle Scholar
  20. [20]
    W.C. Yang, L.P. Huang, R.R. Zhang, M.P. Wang, Z. Li, Y.L. Jia, R.S. Lei, X.F. Sheng, J. Alloys Compd. 514, 220 (2012)CrossRefGoogle Scholar
  21. [21]
    Y. Wang, Z.K. Liu, L.Q. Chen, C. Wolverton, Acta Mater. 55, 5934 (2007)CrossRefGoogle Scholar
  22. [22]
    K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato, A. Kamio, S. Ikeno, J. Mater. Sci. 35, 179 (2000)CrossRefGoogle Scholar
  23. [23]
    G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, Acta Mater. 46, 3893 (1998)CrossRefGoogle Scholar
  24. [24]
    A. Gaber, A.M. Ali, K. Matsuda, T. Kawabata, T. Yamazaki, S. Ikeno, J. Alloys Compd. 432, 149 (2007)CrossRefGoogle Scholar
  25. [25]
    Y. Li, L.E. Murr, J.C. McClure, Mater. Sci. Eng. A 271, 213 (1999)CrossRefGoogle Scholar
  26. [26]
    C. Gallais, A. Denquin, Y. Bréchet, G. Lapasset, Mater. Sci. Eng. A 496, 77 (2008)CrossRefGoogle Scholar
  27. [27]
    E.F. AboZeid, A. Gaber, Mater. Sci. Technol. 27, 487 (2011)CrossRefGoogle Scholar
  28. [28]
    P. Dong, Doctoral dissertation, Jilin University, 2014Google Scholar
  29. [29]
    D.L. Holt, J. Appl. Phys. 41, 3197 (1970)CrossRefGoogle Scholar
  30. [30]
    H. Mughrabi, Acta Mater. 31, 1367 (1983)CrossRefGoogle Scholar
  31. [31]
    W. Woo, L. Balogh, T. Ungár, H. Choo, Z.L. Feng, Mater. Sci. Eng. A 498, 308 (2008)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Luoyang Ship Material Research InstituteLuoyangChina
  2. 2.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina

Personalised recommendations