Advertisement

Microstructure, Texture Evolution, and Mechanical Properties of ECAP-Processed ZAT522 Magnesium Alloy

  • Ying Ma
  • Fu-Yin HanEmail author
  • Cheng Liu
  • Ming-Zhe Li
Article
  • 11 Downloads

Abstract

In this work, the high-strength Mg–5Zn–2Al–2Sn (ZAT522, in wt%) Mg alloys was obtained at 220 °C and 130 °C by a two-step equal channel angular pressing (ECAP). For each stage, two passes were used. The results showed a remarkable grain refinement after the first stage of ECAP (A2 samples), leading to a fine-grained structure with average size of 1.40 μm. The additional stage (A4 samples) caused further grain refinement to 1.18 μm, and an ultra-fine grain structure (700 nm) appeared in the precipitate-rich region. The grain refinement mechanism for both samples was discussed in detail. To this end, the original extrusion fiber texture evolved into a new strong texture characterized by the base planes tilted toward the ECAP shear plane, with a higher Schmid factor value of 0.34. Compared with the as-extruded alloy, the yield strength of the A2 samples increased from 180 to 245 MPa, which was mainly attributed to the combined effects of grain boundary strengthening and precipitation strengthening. In the case of A4 samples, the dislocation strengthening resulted in a net increase in yield strength to 335 MPa, while the ductility was significantly reduced.

Keywords

Mg–5Zn–2Al–2Sn Mg alloy ECAP Microstructure Texture Tension properties 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51874209 and 51771129).

References

  1. [1]
    Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Acta Metall. Sin. (Engl. Lett.) 21, 328 (2008)Google Scholar
  2. [2]
    J. Bai, Y.S. Sun, S. Xun, F. Xue, T.B. Zhu, Mater. Sci. Eng. A 419, 1 (2006)CrossRefGoogle Scholar
  3. [3]
    Y. Zhang, X.F. Huang, Z.D. Ma, Y. Li, F. Guo, J.C. Yang, Y. Ma, Y. Hao, Mater. Sci. Eng. A 686, 93 (2017)CrossRefGoogle Scholar
  4. [4]
    S.J. Meng, H. Yu, S.D. Fan, Q.Z. Li, S.H. Park, J.S. Suh, Y.M. Kim, X.L. Nan, M.Z. Bian, F.X. Yin, W.M. Zhao, B.S. You, K.S. Shin, Acta Metall. Sin. (Engl. Lett.) 32, 145 (2019)CrossRefGoogle Scholar
  5. [5]
    P. Cao, M.L. Zhang, W. Han, Y.D. Yan, L.J. Chen, Acta Metall. Sin. (Engl. Lett.) 25, 265 (2012)Google Scholar
  6. [6]
    B. Wang, X.H. Chen, F.S. Pan, J.J. Mao, Prog. Nat. Sci. 27, 695 (2017)CrossRefGoogle Scholar
  7. [7]
    Y. Wang, H.J. Wu, X.T. Liu, Y.L. Jiao, J.F. Sun, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, M.L. Zhang, Mater. Sci. Eng. A 761, 138049 (2019)CrossRefGoogle Scholar
  8. [8]
    H.J. Wu, T.Z. Wang, R.Z. Wu, L.G. Hou, J.H. Zhang, X.L. Li, M.L. Zhang, J. Mater. Process. Tech. 254, 265 (2018)CrossRefGoogle Scholar
  9. [9]
    L.G. Hou, T.Z. Wang, R.Z. Wu, J.H. Zhang, M.L. Zhang, A.P. Dong, B.D. Sun, S. Betsofen, B. Krit, J. Mater. Sci. Technol. 34, 317 (2018)CrossRefGoogle Scholar
  10. [10]
    H. Liu, H. Huang, C. Wang, J.P. Sun, J. Bai, F. Xue, A.B. Ma, X.B. Cheng, Recent advances in LPSO-containing wrought magnesium alloys: relationships between processing, microstructure, and mechanical properties. JOM (2019).  https://doi.org/10.1007/s11837-019-03610-9 CrossRefGoogle Scholar
  11. [11]
    H. Liu, J. Ju, X.W. Yang, J.L. Yan, D. Song, J.H. Jiang, A.B. Ma, J. Alloys Compd. 704, 509 (2017)CrossRefGoogle Scholar
  12. [12]
    B. Srinivasarao, N.V. Dudamell, M.T. Pérez-Prado, Mater. Charact. 75, 101 (2013)CrossRefGoogle Scholar
  13. [13]
    B. Kima, C.H. Park, H.S. Kim, B.S. You, S.S. Park, Scr. Mater. 76, 21 (2014)CrossRefGoogle Scholar
  14. [14]
    Y.C. Yuan, A.B. Ma, X.F. Gou, J.H. Jiang, G. Arhin, D. Song, H. Liu, Mater. Sci. Eng. A 677, 216 (2016)Google Scholar
  15. [15]
    M. Gzyl, A. Rosochowski, S. Boczkal, L. Olejnik, Mater. Sci. Eng. A 638, 20 (2015)CrossRefGoogle Scholar
  16. [16]
    E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, M. Vedani, J. Alloys Compd. 638, 267 (2015)CrossRefGoogle Scholar
  17. [17]
    D.H. Shin, J.J. Pak, Y.K. Kim, K.T. Park, Y.S. Kim, Mater. Sci. Eng. A 323, 409 (2002)CrossRefGoogle Scholar
  18. [18]
    K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016)CrossRefGoogle Scholar
  19. [19]
    K. Sheng, L.W. Lu, Y. Xiang, M. Ma, Z.C. Wang, Acta Metall. Sin. (Engl. Lett.) 32, 235 (2019)CrossRefGoogle Scholar
  20. [20]
    W.L. Cheng, L. Tian, S.C. Ma, Y. Bai, H.X. Wang, Materials 10, 708 (2017)CrossRefGoogle Scholar
  21. [21]
    F.-D. Dumitru, O.F. Higuera-Cobos, J.M. Cabrera, Mater. Sci. Eng. A 594, 32 (2014)CrossRefGoogle Scholar
  22. [22]
    R. Jahadi, M. Sedighi, H. Jahed, Mater. Sci. Eng. A 593, 178 (2014)CrossRefGoogle Scholar
  23. [23]
    T. Liu, W. Zhang, S.D. Wu, C.B. Jiang, S.X. Li, Y.B. Xu, Mater. Sci. Eng. A 360, 345 (2003)CrossRefGoogle Scholar
  24. [24]
    Y. Bai, W.L. Cheng, S.C. Ma, J. Zhang, C. Guo, Y. Zhang, Acta Metall. Sin. (Engl. Lett.) 31, 41 (2018)Google Scholar
  25. [25]
    Y.B. He, Q.L. Pan, Y.J. Qin, X.Y. Liu, W.B. Li, Y.L. Chiu, J. Chen, Chin. J. Nonferr. Metal. 20, 2274 (2010)Google Scholar
  26. [26]
    C.J. Wang, K.K. Deng, S.S. Zhou, W. Liang, Acta Metall. Sin. (Engl. Lett.) 29, 527 (2016)CrossRefGoogle Scholar
  27. [27]
    E. Mostaed, M. Hashempour, A. Fabrizi, D. Dellasega, M. Bestetti, F. Bonollo, M. Vedani, J. Mech. Behav. Biomed. 37, 307 (2014)CrossRefGoogle Scholar
  28. [28]
    A. Gholinia, P.B. Prangnell, M.V. Markushev, Acta Mater. 48, 1115 (2000)CrossRefGoogle Scholar
  29. [29]
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higash, Acta Mater. 51, 2055 (2003)CrossRefGoogle Scholar
  30. [30]
    P. Yang, L.N. Wang, X. Li, L. Meng, Acta Metall. Sin. (Engl. Lett.) 23, 63 (2010)Google Scholar
  31. [31]
    N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Scr. Mater. 57, 1004 (2007)CrossRefGoogle Scholar
  32. [32]
    J.L. Wang, Y.C. Guo, J.L. Li, Z. Yang, S. Kamado, L.M. Wang, J. Alloys Compd. 653, 100 (2015)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Shanxi Key Laboratory of Advanced Magnesium-Based MaterialsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations