Microstructure, Mechanical and Corrosion Properties of AlCoCrFeNi High-Entropy Alloy Prepared by Spark Plasma Sintering

  • P. F. Zhou
  • D. H. XiaoEmail author
  • T. C. Yuan


AlCoCrFeNi is one of the most widely studied alloy systems in the high-entropy alloy (HEA) area due to the interesting microstructure and mechanical properties. In this study, the AlCoCrFeNi alloy was prepared using spark plasma sintering (SPS) with pre-alloy powders obtained through gas atomization. Then, the sintered samples were annealed at 700, 800 and 900 °C, and the effect of annealing temperature on the microstructure, mechanical and corrosion properties was studied. The results show that phase formation takes place during annealing process with the new phase (σ) and some nanoscale BCC precipitates formation. The size and quantity of the nanoscale precipitates increase with increasing annealing temperature. The twin is also observed after annealing at 900 °C. The annealing temperature has an obvious effect on the mechanical properties and corrosion resistance of the spark plasma sintered AlCoCrFeNi HEA. When the annealing temperature is 700 °C, the hardness, yield strength and fracture strength reach the maximum with the value of 545 HV, 1430 MPa and 2230 MPa, respectively. The compressive ratio reaches the maximum of 17.2%, with the annealing temperature increasing to 800 °C. The corrosion resistance of the samples decreases with increasing the annealing temperature.


High-entropy alloy Phase transformation Precipitates Mechanical property Corrosion resistance 



The authors gratefully acknowledge the financial support from the Natural Science Foundation of Hunan (China) (No. 2016JJ214) and the Natural Science Foundation of China (No. 51874369).


  1. [1]
    O.N. Senkov, C. Woodward, S.V. Senkova, D.B. Miracle, J. Mater. Sci. 47, 6522 (2012)CrossRefGoogle Scholar
  2. [2]
    Y.X. Zhuang, W.J. Liu, P.F. Xing, F. Wang, J.C. He, Acta Metall. Sin. (Engl. Lett.) 25, 124 (2012)Google Scholar
  3. [3]
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater Sci. 6, 11 (2014)Google Scholar
  4. [4]
    Y. Zou, J.M. Wheeler, H. Ma, P. Okle, R. Spolenak, Nano Lett. 17, 1569 (2017)CrossRefGoogle Scholar
  5. [5]
    D.H. Xiao, P.F. Zhou, W.Q. Wu, H.Y. Diao, M.C. Gao, M. Song, P.K. Liaw, Mater. Design 116, 438 (2017)CrossRefGoogle Scholar
  6. [6]
    P.F. Zhou, D.H. Xiao, Z. Wu, X.Q. Ou, Mater. Sci. Eng. A 739, 86 (2019)CrossRefGoogle Scholar
  7. [7]
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)CrossRefGoogle Scholar
  8. [8]
    A. Kumar, A.K. Swarnakar, M. Chopkar, J. Mater. Eng. Perform. 27, 3304 (2018)CrossRefGoogle Scholar
  9. [9]
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, Q.O. Ritchie, Science 345, 1153 (2014)CrossRefGoogle Scholar
  10. [10]
    Y.Z. Shi, L. Collins, R. Feng, C. Zhang, N. Balke, P.K. Liaw, B. Yang, Corros. Sci. 133, 120 (2018)CrossRefGoogle Scholar
  11. [11]
    J. Chen, P.Y. Niu, Y.Z. Liu, Y.K. Lu, X.H. Wang, Y.L. Peng, J.N. Liu, Mater. Design 94, 39 (2016)CrossRefGoogle Scholar
  12. [12]
    A. Munitz, S. Salhov, S. Hayun, N. Frage, J. Alloys Compd. 683, 221 (2016)CrossRefGoogle Scholar
  13. [13]
    Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G.Y. Wang, G.F. Zhao, F.Q. Yang, P.K. Liaw, Mater. Sci. Eng. A 647, 229 (2015)CrossRefGoogle Scholar
  14. [14]
    Y.Z. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, P.K. Liaw, Corros. Sci. 119, 33 (2017)CrossRefGoogle Scholar
  15. [15]
    W.R. Wang, W.L. Wang, J.W. Yeh, J. Alloys Compd. 589, 143 (2014)CrossRefGoogle Scholar
  16. [16]
    W. Ji, Z.Y. Fu, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, J. Alloys Compd. 589, 61 (2014)CrossRefGoogle Scholar
  17. [17]
    Z.M. Jiao, Z.H. Wang, R.F. Wu, J.W. Qiao, Appl. Phys. A 122, 794 (2016)CrossRefGoogle Scholar
  18. [18]
    J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, J. Alloys Compd. 726, 885 (2017)CrossRefGoogle Scholar
  19. [19]
    Y.K. Lv, R.Y. Hu, Z.H. Yao, J. Chen, D.P. Xu, Y. Liu, X.H. Fan, Mater. Design 132, 392 (2017)CrossRefGoogle Scholar
  20. [20]
    K.S. Lee, J.H. Kang, K.R. Lim, Y.S. Na, Mater. Charact. 132, 162 (2017)CrossRefGoogle Scholar
  21. [21]
    G. Muthupandi, K.R. Lim, Y.S. Na, J. Park, D. Lim, H. Kim, S. Park, Y.S. Choi, Mater. Sci. Eng. A 696, 146 (2017)CrossRefGoogle Scholar
  22. [22]
    N.G. Jones, R. Izzo, P.M. Mignanelli, K.A. Christofidou, H.J. Stone, Intermetallics 71, 43 (2016)CrossRefGoogle Scholar
  23. [23]
    E. Ghassemali, R. Sonkusare, K. Biswas, N.P. Gurao, J. Alloys Compd. 710, 539 (2017)CrossRefGoogle Scholar
  24. [24]
    Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloys Compd. 488, 57 (2009)CrossRefGoogle Scholar
  25. [25]
    S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, K. Biswas, Mater. Sci. Eng. A 679, 299 (2017)CrossRefGoogle Scholar
  26. [26]
    A.J. Zhang, J.S. Han, J.H. Meng, B. Su, P.D. Li, Mater. Lett. 181, 82 (2016)CrossRefGoogle Scholar
  27. [27]
    E. Colombini, R. Rosa, L. Trombi, M. Zadra, A. Casagrande, P. Veronesi, Mater. Chem. Phys. 210, 78 (2018)CrossRefGoogle Scholar
  28. [28]
    M. Vaidya, A. Prasad, A. Parakh, B.S. Murty, Mater. Design 126, 37 (2017)CrossRefGoogle Scholar
  29. [29]
    D. Giuntini, E.A. Olevsky, C.G. Cardona, A.L. Maximenko, M.S. Yurlova, C.D. Haines, D.G. Martin, D. Kapoor, Materials 6, 2612 (2013)CrossRefGoogle Scholar
  30. [30]
    P.P. Ding, A.Q. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, X.L. Gu, J. Alloys Compd. 721, 609 (2017)CrossRefGoogle Scholar
  31. [31]
    I. Kunce, M. Polanski, K. Karczewski, T. Plocinski, K.J. Kurzydlowski, J. Alloys Compd. 648, 751 (2015)CrossRefGoogle Scholar
  32. [32]
    H. Shiratori, T. Fujieda, K. Yamanaka, Y. Koizumi, K. Kuwabara, T. Kato, A. Chiba, Mater. Sci. Eng. A 656, 39 (2016)CrossRefGoogle Scholar
  33. [33]
    R. Wang, K. Zhang, C. Davies, X.H. Wu, J. Alloys Compd. 694, 971 (2017)CrossRefGoogle Scholar
  34. [34]
    T.M. Butler, M.L. Weaver, J. Alloys Compd. 691, 119–129 (2017)CrossRefGoogle Scholar
  35. [35]
    J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M.D. Hosson, Acta Mater. 131, 206 (2017)CrossRefGoogle Scholar
  36. [36]
    L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, P.K. Liaw, Nat. Commun. 6, 5964 (2015)CrossRefGoogle Scholar
  37. [37]
    J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187 (2016)CrossRefGoogle Scholar
  38. [38]
    Y.F. Wang, S.G. Ma, X.H. Chen, J.Y. Shi, Y. Zhang, J.W. Qiao, Acta Metall. Sin. (Engl. Lett.) 26, 277 (2013)CrossRefGoogle Scholar
  39. [39]
    N.Q. Vo, C.H. Liebscher, M.J.S. Rawlings, M. Asta, D.C. Dunand, Acta Mater. 71, 89 (2014)CrossRefGoogle Scholar
  40. [40]
    W.Q. Wu, R. Zhou, B.Q. Wei, S. Ni, Y. Liu, M. Song, Mater. Charact. 144, 605 (2018)CrossRefGoogle Scholar
  41. [41]
    L. Zhang, Y. Zhou, X. Jin, X.Y. Du, B.S. Li, Mater. Sci. Eng. A 732, 186 (2018)CrossRefGoogle Scholar
  42. [42]
    Y.T. Wang, J.B. Li, Y.C. Xin, X.H. Chen, M. Rashad, B. Liu, Y. Liu, Acta Metall. Sin. (Engl. Lett.) 32, 932 (2019)CrossRefGoogle Scholar
  43. [43]
    B.L. Zhang, Y. Zhang, S.M. Guo, J. Mater. Sci. 53, 14729 (2018)CrossRefGoogle Scholar
  44. [44]
    Y.F. Kao, T.D. Lee, S.K. Chen, Y.S. Chang, Corros. Sci. 52, 1026 (2010)CrossRefGoogle Scholar
  45. [45]
    J.B. Cheng, D. Liu, X.B. Liang, B.S. Liu, Acta Metall. Sin. (Engl. Lett.) 27, 1031 (2014)CrossRefGoogle Scholar
  46. [46]
    X.L. Shang, Z.J. Wang, Q.F. Wu, J.C. Wang, J.J. Li, J.K. Yu, Acta Metall. Sin. (Engl. Lett.) 32, 41 (2019)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Key Laboratory of Science and Technology for National Defence on High-strength Structural MaterialsCentral South UniversityChangshaChina

Personalised recommendations