Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 12, pp 1530–1536 | Cite as

Growth of Gallium Nitride Films on Multilayer Graphene Template Using Plasma-Enhanced Atomic Layer Deposition

  • Ying-Feng He
  • Mei-Ling Li
  • San-Jie Liu
  • Hui-Yun Wei
  • Huan-Yu Ye
  • Yi-Meng Song
  • Peng Qiu
  • Yun-Lai An
  • Ming-Zeng PengEmail author
  • Xin-He ZhengEmail author
Article
  • 49 Downloads

Abstract

In this work, the GaN thin films were directly deposited on multilayer graphene (MLG) by plasma-enhanced atomic layer deposition. The deposition was carried out at a low temperature using triethylgallium (TEGa) precursor and Ar/N2/H2 plasma. Chemical properties of the bulk GaN and GaN–graphene interface were analyzed using X-ray photoelectron spectroscopy. The sharp interface between GaN and graphene was verified via X-ray reflectivity and transmission electron microscope. The microstructures and the nucleation behaviors of the GaN grown on graphene have been also studied. The results of grazing incidence X-ray diffraction and Raman spectrum indicate that the as-deposited sample is polycrystalline with wurtzite structure and has a weakly tensile stress. Optical properties of the sample were investigated by photoluminescence (PL) at room temperature. The successful growth of GaN on MLG at a low temperature opens up the possibility of ameliorating the performance of electronic and optical devices based on GaN/graphene heterojunction.

Keywords

Plasma-enhanced atomic layer deposition Gallium nitride Graphene Interface microstructure 

Notes

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 110751402347), the Beijing Natural Science Foundation (Nos. 4173077 and 2184112), the Fundamental Research Funds for the Central Universities, China (Nos. FRF-BR-16-018A, FRF-TP-17-022A1, FRF-TP-17-069A1 and 06400071), the China Postdoctoral Science Foundation (No. 2018M631333) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2015387).

References

  1. [1]
    S.J. Woo, O. Jitsuo, U. Kohei, K. Atsushi, F. Hiroshi, Appl. Phys. Express 7, 85502 (2014)CrossRefGoogle Scholar
  2. [2]
    X. Zhang, Q. Liu, B. Liu, W. Yang, J. Li, P. Niu, X. Jiang, J. Mater. Chem. C 5, 4319 (2017)CrossRefGoogle Scholar
  3. [3]
    X. Zhang, B. Liu, Q. Liu, W. Yang, C. Xiong, J. Li, X. Jiang, PACS Appl. Mater. Interfaces 9, 2669 (2017)CrossRefGoogle Scholar
  4. [4]
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)CrossRefGoogle Scholar
  5. [5]
    F. Giannazzo, G. Fisichella, G. Greco, A. La Magna, F. Roccaforte, B. Pecz, R. Yakimova, R. Dagher, A. Michon, Y. Cordier, Phys. Status Solidi A 214, 1600460 (2017)CrossRefGoogle Scholar
  6. [6]
    S. Chandramohan, J.H. Kang, B.D. Ryu, J.H. Yang, S. Kim, H. Kim, J.B. Park, T.Y. Kim, B.J. Cho, E.K. Suh, C.H. Hong, ACS Appl. Mater. Interf. 5, 958 (2013)CrossRefGoogle Scholar
  7. [7]
    G. Fisichella, G. Greco, S. di Franco, R. Lo Nigro, E. Schilirò, F. Roccaforte, F. Giannazzo, Mater. Sci. Forum 858, 1137 (2016)CrossRefGoogle Scholar
  8. [8]
    S. Tongay, M. Lemaitre, T. Schumann, K. Berke, B.R. Appleton, B. Gila, A.F. Hebard, Appl. Phys. Lett. 99, 102102 (2011)CrossRefGoogle Scholar
  9. [9]
    S. Tongay, M. Lemaitre, X. Miao, B. Gila, B.R. Appleton, A.F. Hebard, Phys. Rev. X 2, 011002 (2012)Google Scholar
  10. [10]
    H. Zhong, Z. Liu, G. Xu, Y. Fan, J. Wang, X. Zhang, L. Liu, K. Xu, H. Yang, Appl. Phys. Lett. 100, 122108 (2012)CrossRefGoogle Scholar
  11. [11]
    H. Zhong, Z. Liu, L. Shi, G. Xu, Y. Fan, Z. Huang, J. Wang, G. Ren, K. Xu, Appl. Phys. Lett. 104, 212101 (2014)CrossRefGoogle Scholar
  12. [12]
    L. Wang, Y. Zhang, X. Li, E. Guo, Z. Liu, X. Yi, H. Zhu, G. Wang, RSC Adv. 3, 3359 (2013)CrossRefGoogle Scholar
  13. [13]
    Z.Y. Al Balushi, T. Miyagi, Y.C. Lin, K. Wang, L. Calderin, G. Bhimanapati, J.M. Redwing, J.A. Robinson, Surf. Sci. 634, 81 (2015)CrossRefGoogle Scholar
  14. [14]
    K. Chung, C.H. Lee, G.C. Yi, Science 330, 655 (2010)CrossRefGoogle Scholar
  15. [15]
    N. Nepal, V.D. Wheeler, T.J. Anderson, F.J. Kub, M.A. Mastro, R.L. Myers-Ward, S.B. Qadri, J.A. Freitas, S.C. Hernandez, L.O. Nyakiti, S.G. Walton, K. Gaskill, C.R. Eddy, Appl. Phys. Express 6, 061003 (2013)CrossRefGoogle Scholar
  16. [16]
    F. Giannazzo, G. Fisichella, G. Greco, E. Schilirò, I. Deretzis, R. Lo Nigro, A. La Magna, F. Roccaforte, F. Iucolano, S. Lo Verso, S. Ravesi, P. Prystawko, P. Kruszewski, M. Leszczyński, R. Dagher, E. Frayssinet, A. Michon, Y. Cordier, Phys. Status Solidi A 215, 1700653 (2017)CrossRefGoogle Scholar
  17. [17]
    S.J. Chae, Y.H. Kim, T.H. Seo, D.L. Duong, S.M. Lee, M.H. Park, E.S. Kim, J.J. Bae, S.Y. Lee, H. Jeong, E.K. Suh, C.W. Yang, M.S. Jeong, Y.H. Lee, RSC Adv. 5, 1343 (2015)CrossRefGoogle Scholar
  18. [18]
    K.K. Kim, T. Palacios, A. Pesquera, A. Centeno, A. Zurutuza, Appl. Phys. Express 7, 071001 (2014)CrossRefGoogle Scholar
  19. [19]
    S.W. Hwang, S.-H. Choi, Bull. Korean Chem. Soc. 37, 1004 (2016)CrossRefGoogle Scholar
  20. [20]
    H.B. Profijt, S.E. Potts, M.C.M. van de Sanden, W.M.M. Kessels, J. Vac. Sci. Technol. A 29, 050801 (2011)CrossRefGoogle Scholar
  21. [21]
    A.M. Munshi, D. Kim, C.P. Heimdal, M. Heilmann, S.H. Christiansen, P.E. Vullum, A.T.J. Van Helvoort, H. Weman, Appl. Phys. Lett. 113, 263102 (2018)CrossRefGoogle Scholar
  22. [22]
    A. Haider, P. Deminskyi, M. Yilmaz, K. Elmabruk, I. Yilmaz, N. Biyikli, J. Mater. Chem. C 6, 6471 (2018)CrossRefGoogle Scholar
  23. [23]
    S. Liu, M. Peng, C. Hou, Y. He, M. Li, X. Zheng, Nanoscale Res. Lett. 12, 279 (2017)CrossRefGoogle Scholar
  24. [24]
    K.S.A. Butcher, Afifuddin, T.L. Tansley, N. Brack, P.J. Pigram, H. Timmers, K.E. Prince, R.G. Elliman, Appl. Surf. Sci. 230, 18 (2004)CrossRefGoogle Scholar
  25. [25]
    K.S.A. Butcher, Afifuddin, P.P.T. Chen, T.L. Tansley, Phys. Status Solidi C 0, 156 (2002)CrossRefGoogle Scholar
  26. [26]
    S. Kizir, A. Haider, N. Biyikli, J. Vac. Sci. Technol. A 34, 041511 (2016)CrossRefGoogle Scholar
  27. [27]
    N. Elkashef, R.S. Srinivasa, S. Major, S.C. Sabharwal, K.P. Muthe, Thin Solid Films 333, 9 (1998)CrossRefGoogle Scholar
  28. [28]
    T. Sasaki, T. Matsuoka, J. Appl. Phys. 64, 4531 (1988)CrossRefGoogle Scholar
  29. [29]
    C.R. Kingsley, T.J. Whitaker, A.T.S. Wee, R.B. Jackman, J.S. Foord, Mater. Sci. Eng. B 29, 78 (1995)CrossRefGoogle Scholar
  30. [30]
    S.D. Wolter, B.P. Luther, D.L. Waltemyer, C. Önneby, S.E. Mohney, R.J. Molnar, Appl. Phys. Lett. 70, 2156 (1997)CrossRefGoogle Scholar
  31. [31]
    F.M. Amanullah, K.J. Pratap, V.B. Hari, Mater. Sci. Eng. B 52, 93 (1998)CrossRefGoogle Scholar
  32. [32]
    D.G. Larrude, Y. Garcia-Basabe, F.L. Freire, M.L.M. Rocco, RSC Adv. 5, 74189 (2015)CrossRefGoogle Scholar
  33. [33]
    K.V. Emtsev, F. Speck, T. Seyller, L. Ley, J.D. Riley, Phys. Rev. B 77, 155303 (2008)CrossRefGoogle Scholar
  34. [34]
    P. Motamedi, N. Dalili, K. Cadien, J. Mater. Chem. C 3, 7428 (2015)CrossRefGoogle Scholar
  35. [35]
    P. Deminskyi, A. Haider, E. Kovalska, N. Biyikli, J. Vac. Sci. Technol. A 36, 01A107 (2018)CrossRefGoogle Scholar
  36. [36]
    H.K. Hong, J. Jo, D. Hwang, J. Lee, N. Yeon, S. Son, J.H. Kim, M.J. Jin, Y.C. Jun, R. Erni, S.K. Kwak, J.W. Yoo, Z. Lee, Nano Lett. 17, 120 (2017)CrossRefGoogle Scholar
  37. [37]
    H. Hiroshi, J. Phys. Condes. Matter 14, R967 (2002)CrossRefGoogle Scholar
  38. [38]
    C.Y. Fong, S.S. Ng, F.K. Yam, H. Abu Hassan, Z. Hassan, Acta Metall. Sin. (Engl. Lett.) 28, 362 (2015)CrossRefGoogle Scholar
  39. [39]
    C. Ozgit, I. Donmez, M. Alevli, N. Biyikli, J. Vac. Sci. Technol. A 30, 01A124 (2012)CrossRefGoogle Scholar
  40. [40]
    D.M. Hausmann, R.G. Gordon, J. Cryst. Growth 249, 251 (2003)CrossRefGoogle Scholar
  41. [41]
    H.Y. Huang, C.H. Chuang, C.K. Shu, Y.C. Pan, W.H. Lee, W.K. Chen, W.H. Chen, M.C. Lee, Appl. Phys. Lett. 80, 3349 (2002)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ying-Feng He
    • 1
  • Mei-Ling Li
    • 1
  • San-Jie Liu
    • 1
  • Hui-Yun Wei
    • 1
  • Huan-Yu Ye
    • 1
  • Yi-Meng Song
    • 1
  • Peng Qiu
    • 1
  • Yun-Lai An
    • 1
  • Ming-Zeng Peng
    • 1
    Email author
  • Xin-He Zheng
    • 1
    Email author
  1. 1.School of Mathematics and Physics, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface ScienceUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations