Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Improved Corrosion Resistance in AZ61 Magnesium Alloys Induced by Impurity Reduction

  • 72 Accesses

Abstract

The effect of impurity element Fe on corrosion behavior of AZ61 magnesium alloys in various states has been investigated by immersion test and hydrogen evolution measurements in 3.5% sodium chloride solution. The corrosion rate is found to relay on the impurity Fe concentration in the alloys and decreases with decreasing Fe content. When Fe content drops from 150 ppm to 10 ppm, the corresponding corrosion rates under as-cast and solution treatment conditions are reduced from 8.54 mm/a and 8.61 mm/a to 2.54 mm/a and 0.21 mm/a, respectively. The corrosion pattern of the AZ61 alloys is the localized corrosion, and the galvanic couples are formed among the impurity particles, second-phase particles and the matrix. The Fe impurity particles tend to act as main cathodic to form micro-galvanic cell with the α-Mg matrix, which is harmful for corrosion resistance of AZ61 alloy.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1]

    T. Morishige, K. Ueno, M. Okano, T. Goto, E. Nakamura, T. Takenaka, Mater. Trans. 55, 1506 (2014)

  2. [2]

    M. Rashad, F. Pan, M. Asif, X. Chen, J. Magnes. Alloys 5, 271 (2017)

  3. [3]

    C. Zhao, X. Chen, F. Pan, J. Wang, S. Gao, T. Tu, C. Liu, J. Yao, A. Atrens, J. Mater. Sci. Technol. 35, 142 (2019)

  4. [4]

    H. Matsubara, Y. Ichige, K. Fujita, H. Nishiyama, K. Hodouchi, Corros. Sci. 66, 203 (2013)

  5. [5]

    S. Arthanari, R. Nallaiyan, S.K. Seon, J. Magnes. Alloys 5, 277 (2017)

  6. [6]

    C. Zhao, X. Chen, F. Pan, S. Gao, D. Zhao, X. Liu, Mater. Sci. Eng. A 713, 244 (2018)

  7. [7]

    H. Zhao, L.Q. Wang, Y.P. Ren, B. Yang, S. Li, G.W. Qin, Acta Metall. Sin. (Engl. Lett.) 31, 575 (2018)

  8. [8]

    G.L. Song, A. Atrens, Adv. Eng. Mater. 9, 177 (2007)

  9. [9]

    S.H. Adsul, K.R.C.S. Raju, B.V. Sarada, S.H. Sonawane, R. Subasri, J. Magnes. Alloys 6, 299 (2018)

  10. [10]

    L.X. Wang, R.B. Song, C.H. Cai, J.Y. Li, Acta Metall. Sin. (Engl. Lett.) 32, 10 (2019)

  11. [11]

    G. Song, B. Johannesson, S. Hapugoda, D. St. John, Corros. Sci. 46, 955 (2004)

  12. [12]

    G. Song, D. St. John, Corros. Sci. 46, 1381 (2004)

  13. [13]

    Y. Zhang, C. Yan, F. Wang, W. Li, Corros. Sci. 47, 2816 (2005)

  14. [14]

    J. Moscovici, M. Benzakour, S. Decker, C. Carnes, K. Klabunde, A. Michalowicz, J. Synchrotron Radiat. 8, 925 (2001)

  15. [15]

    T. Zheng, Y. Hu, S. Yang, J. Magnes. Alloys 5, 404 (2017)

  16. [16]

    M. Liu, P.J. Uggowitzer, P. Schmutz, A. Atrens, JOM 60, 39 (2008)

  17. [17]

    H.R. Bakhsheshi-Rad, E. Hamzah, R. Ebrahimi-Kahrizsangi, M. Daroonparvar, M. Medraj, Vacuum 125, 185 (2016)

  18. [18]

    B.J. Wang, J.Y. Luan, D.K. Xu, J. Sun, C.Q. Li, E.H. Han, Acta Metall. Sin. (Engl. Lett.) 32, 1 (2019)

  19. [19]

    G.L. Makar, J. Kruger, Int. Mater. Rev. 38, 138 (1993)

  20. [20]

    G. Song, Adv. Eng. Mater. 7, 563 (2005)

  21. [21]

    M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Adv. Eng. Mater. 10, 93 (2008)

  22. [22]

    G. Song, A. Atrens, Adv. Eng. Mater. 5, 837 (2003)

  23. [23]

    M. Inoue, M. Iwai, K. Matuzawa, S. Kamado, Y. Kojima, J. Jpn. Inst. Light Met. 48, 257 (1998)

  24. [24]

    M.C. Zhao, M. Liu, A. Atrens, Adv. Eng. Mater. 10, 104 (2008)

  25. [25]

    M. Zhao, M. Liu, G. Song, A. Atrens, Corros. Sci. 50, 1939 (2008)

  26. [26]

    M. Zhao, L. Ming, G. Song, A. Atrens, Corros. Sci. 50, 3168 (2008)

  27. [27]

    G. Song, A. Atrens, D.S. John, X. Wu, J. Nairn, Corros. Sci. 39, 1981 (1997)

  28. [28]

    L. Yang, X. Zhou, S.M. Liang, R. Schmid-Fetzer, Z. Fan, G. Scamans, J. Robson, G. Thompson, J. Alloys Compd. 619, 396 (2015)

  29. [29]

    N.I.Z. Abidin, D. Martin, A. Atrens, Corros. Sci. 53, 862 (2011)

  30. [30]

    Z. Qiao, Z. Shi, N. Hort, N.I.Z. Abidin, A. Atrens, Corros. Sci. 61, 185 (2012)

  31. [31]

    F. Cao, Z. Shi, J. Hofstetter, P.J. Uggowitzer, G. Song, M. Liu, A. Atrens, Corros. Sci. 75, 78 (2013)

  32. [32]

    A. Atrens, G.L. Song, M. Liu, Z. Shi, F. Cao, M.S. Dargusch, Adv. Eng. Mater. 17, 400 (2015)

  33. [33]

    M. Liu, P.J. Uggowitzer, A.V. Nagasekhar, P. Schmutz, M. Easton, G.L. Song, A. Atrens, Corros. Sci. 51, 602 (2009)

  34. [34]

    Y. Wang, Foundry 50, 61 (2001)

  35. [35]

    L. Peng, J. Chang, X. Guo, A. Atrens, W. Ding, Y. Peng, J. Appl. Electrochem. 39, 913 (2009)

  36. [36]

    N.D. Nam, M.Z. Bian, M. Forsyth, M. Seter, M. Tan, K.S. Shin, Corros. Sci. 64, 263 (2012)

  37. [37]

    Z. Pu, G.L. Song, S. Yang, J.C. Outeiro, O.W.D. Jr, D.A. Puleo, I.S. Jawahir, Corros. Sci. 57, 192 (2012)

  38. [38]

    G. Song, A. Atrens, M. Dargusch, Corros. Sci. 41, 249 (1998)

  39. [39]

    G. Song, A.L. Bowles, D.H. Stjohn, Mater. Sci. Eng. A 366, 74 (2004)

  40. [40]

    D. Eliezer, P. Uzan, E. Aghion, in Magnesium Alloys 2000, ed. by Y. Kojima, T. Aizawa, K. Higashi, S. Kamado, Materials Science Forum, Osaka, 27–30 Jan 2003

  41. [41]

    F. Pan, X. Chen, T. Yan, T. Liu, J. Mao, W. Luo, Q. Wang, J. Peng, A. Tang, B. Jiang, J. Magnes. Alloys 4, 8 (2016)

  42. [42]

    F. Pan, M. Yang, X. Chen, J. Mater. Sci. Technol. 32, 1211 (2016)

  43. [43]

    Pandat is a software package for calculating phase diagrams and thermodynamic properties of multi-component alloys. CompuTherm LLC. http://www.computherm.com/index.php?route=common/home (2018)

  44. [44]

    Z. Shi, A. Atrens, Corros. Sci. 53, 226 (2011)

  45. [45]

    A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, E. Matykina, Corros. Sci. 50, 823 (2008)

  46. [46]

    X. Zhou, Y. Huang, Z. Wei, Q. Chen, F. Gan, Corros. Sci. 48, 4223 (2006)

  47. [47]

    J.I. Kim, H.N. Nguyen, B.S. You, Y. Kim, Scr. Mater. 162, 355 (2019)

  48. [48]

    R. Ambat, N. Aung, W. Zhou, Corros. Sci. 42, 1433 (2000)

  49. [49]

    M.M. Avedesian, H. Baker, Magnesium and Magnesium Alloys ASM Specialty Handbook (ASM International, Ohio, 1999), pp. 56–77

  50. [50]

    X. Guo, J. Chang, S. He, W. Ding, X. Wang, Electrochim. Acta 52, 2570 (2007)

  51. [51]

    J.H. Nordlien, S. Ono, N. Masuko, K. Nisancioglu, Corros. Sci. 39, 1397 (1997)

  52. [52]

    G.L. Song, A. Atrens, Adv. Eng. Mater. 1, 11 (1999)

  53. [53]

    G.L. Song, Z. Xu, Corros. Sci. 54, 97 (2012)

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2016YFB0301100), the National Natural Science Foundation of China (No. 51571043) and the Fundamental Research Funds for the Central Universities (Nos. 2018CDJDCL0019, cqu2018CDHB1A08 and 2018CDGFCL0005).

Author information

Correspondence to Xian-Hua Chen.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Chen, X., Yan, T. et al. Improved Corrosion Resistance in AZ61 Magnesium Alloys Induced by Impurity Reduction. Acta Metall. Sin. (Engl. Lett.) 33, 225–232 (2020). https://doi.org/10.1007/s40195-019-00914-2

Download citation

Keywords

  • AZ61 magnesium alloy
  • Impurity Fe
  • Corrosion rate