Evolution of Microstructure, Residual Stress, and Tensile Properties of Mg–Zn–Y–La–Zr Magnesium Alloy Processed by Extrusion

  • Huseyin ZenginEmail author
  • Yunus Turen
  • Muhammet Emre Turan
  • Fatih Aydın


The microstructure, texture, residual stress, and tensile properties of Mg–6Zn–2Y–1La–0.5Zr (wt%) magnesium alloy were investigated before and after extrusion process, which performed at 300 °C and 400 °C. The microstructural characterizations indicated that the as-cast alloy was comprised of α-Mg, Mg–Zn, Mg–Zn–La, and Mg–Zn–Y phases. During homogenization at 400 °C for 24 h, most of the secondary phases exhibited partial dissolution. Extrusion process led to a remarkable grain refinement due to dynamic recrystallization (DRX). The degree of DRX and the DRXed grain size increased with increasing extrusion temperature. The homogenized alloy did not show a preferential crystallographic orientation, whereas the extruded alloys showed strong basal texture. The extrusion process led to a significant improvement on the compressive residual stress and mechanical properties. The alloy extruded at 300 °C exhibited the highest basal texture intensity, the compressive residual stress and hardness, and yield and tensile strengths among the studied alloys.


ZK60 Magnesium alloy Residual stress Texture Mechanical properties Extrusion 



This study is financially supported by the Scientific Research Projects of Karabuk University (KBU-BAP-16/1-DR-075).


  1. [1]
    M. Kiani, I. Gandikota, M. Rais-Rohani, K. Motoyama, J. Magnes, Alloys 2, 99 (2014)CrossRefGoogle Scholar
  2. [2]
    M. Bamberger, G. Dehm, Annu. Rev. Mater. Res. 38, 505 (2008)CrossRefGoogle Scholar
  3. [3]
    L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals: Structure and Properties (CRC Press, Boca Raton, 2003)Google Scholar
  4. [4]
    Q.S. Yang, B. Jiang, Z.J. Yu, Q.W. Dai, S.Q. Luo, Acta Metall. Sin (Engl. Lett.) 28, 1257 (2015)CrossRefGoogle Scholar
  5. [5]
    T. Tu, X.H. Chen, J. Chen, C.Y. Zhao, F.S. Pan, Acta Metall. Sin. (Engl. Lett.) 32, 23 (2019)CrossRefGoogle Scholar
  6. [6]
    C. Ma, M. Liu, G. Wu, W. Ding, Y. Zhu, Mater. Sci. Eng. A 349, 207 (2003)CrossRefGoogle Scholar
  7. [7]
    H. Yu, Y.M. Kim, B.S. You, H.S. Yu, S.H. Park, Mater. Sci. Eng. A 559, 798 (2013)CrossRefGoogle Scholar
  8. [8]
    H.T. Zhou, Z.D. Zhang, C.M. Liu, Q.W. Wang, Mater. Sci. Eng. A 445–446, 1 (2007)CrossRefGoogle Scholar
  9. [9]
    Z. Zhang, X. Liu, W. Hu, J. Li, Q. Le, L. Bao, Z. Zhu, J. Cui, J. Alloys Compd. 624, 116 (2015)CrossRefGoogle Scholar
  10. [10]
    J.B. Zhang, L.B. Tong, C. Xu, Z.H. Jiang, L.R. Cheng, S. Kamado, H.J. Zhang, Mater. Sci. Eng. A 708, 11 (2017)CrossRefGoogle Scholar
  11. [11]
    X. Fang, S. Lü, J. Wang, X. Yang, S. Wu, Mater. Sci. Eng. A 699, 1 (2017)CrossRefGoogle Scholar
  12. [12]
    S.H. Park, B.S. You, R.K. Mishra, A.K. Sachdev, Mater. Sci. Eng. A 598, 396 (2014)CrossRefGoogle Scholar
  13. [13]
    X. Lu, G. Zhao, J. Zhou, C. Zhang, L. Chen, S. Tang, J. Alloys Compd. 732, 257 (2018)CrossRefGoogle Scholar
  14. [14]
    P.J. Withers, Rep. Prog. Phys. 70, 2211 (2007)CrossRefGoogle Scholar
  15. [15]
    L. Commin, M. Dumont, R. Rotinat, F. Pierron, J.E. Masse, L. Barrallier, Mater. Sci. Eng. A 551, 288 (2012)CrossRefGoogle Scholar
  16. [16]
    T. Hosaka, S. Yoshihara, I. Amanina, B.J. MacDonald, Procedia Eng. 184, 432 (2017)CrossRefGoogle Scholar
  17. [17]
    C. Wang, T. Luo, J. Zhou, Y. Yang, Mater. Sci. Eng. A 722, 14 (2018)CrossRefGoogle Scholar
  18. [18]
    EN ISO 6892-1, Metallic Materials-Tensile Testing-Part 1: Method of Test at Room Temperature (ISO 6892-1:2009) (European Committee for Standardization, n.d.)Google Scholar
  19. [19]
    A. Lan, L. Huo, Mater. Sci. Eng. A 651, 646 (2016)CrossRefGoogle Scholar
  20. [20]
    J.Y. Lee, D.H. Kim, H.K. Lim, D.H. Kim, Mater. Lett. 59, 3801 (2005)CrossRefGoogle Scholar
  21. [21]
    S. Luo, A. Tang, F. Pan, K. Song, W. Wang, Trans. Nonferrous Met. Soc. China 21, 795 (2011)CrossRefGoogle Scholar
  22. [22]
    M. Mezbahul-Islam, A.O. Mostafa, M. Medraj, J. Mater. 2014, e704283 (2014)Google Scholar
  23. [23]
    H. Zengin, Y. Turen, H. Ahlatci, Y. Sun, J. Mater. Eng. Perform. 27, 389 (2018)CrossRefGoogle Scholar
  24. [24]
    L. Liu, X. Chen, F. Pan, Z. Wang, W. Liu, P. Cao, T. Yan, X. Xu, Mater. Sci. Eng. A 644, 247 (2015)CrossRefGoogle Scholar
  25. [25]
    Z.C. Hildebrand, M. Qian, D.H. StJohn, M.T. Frost, in (Minerals, Metals & Materials Society (TMS), 2004)Google Scholar
  26. [26]
    J.D. Robson, C. Paa-Rai, Acta Mater. 95, 10 (2015)CrossRefGoogle Scholar
  27. [27]
    H. Zengin, Y. Turen, H. Ahlatci, Y. Sun, I.H. Kara, Key Eng. Mater. 750, 118 (2017)CrossRefGoogle Scholar
  28. [28]
    Y. Du, M. Zheng, X. Qiao, W. Peng, B. Jiang, Mater. Sci. Eng. A 673, 47 (2016)CrossRefGoogle Scholar
  29. [29]
    M.L. Huang, H.X. Li, H. Ding, J.W. Zhao, S.M. Hao, J. Alloys Compd. 612, 479 (2014)CrossRefGoogle Scholar
  30. [30]
    N.G. Ross, M.R. Barnett, A.G. Beer, Mater. Sci. Eng. A 619, 238 (2014)CrossRefGoogle Scholar
  31. [31]
    M. Shahzad, L. Wagner, Mater. Sci. Eng. A 506, 141 (2009)CrossRefGoogle Scholar
  32. [32]
    A.H. Ammouri, G. Kridli, G. Ayoub, R.F. Hamade, J. Mater. Process. Technol. 222, 301 (2015)CrossRefGoogle Scholar
  33. [33]
    C.I. Chang, C.J. Lee, J.C. Huang, Scr. Mater. 51, 509 (2004)CrossRefGoogle Scholar
  34. [34]
    F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Amsterdam, 2012)Google Scholar
  35. [35]
    J.D. Robson, D.T. Henry, B. Davis, Acta Mater. 57, 2739 (2009)CrossRefGoogle Scholar
  36. [36]
    Y.N. Wang, J.C. Huang, Mater. Chem. Phys. 81, 11 (2003)CrossRefGoogle Scholar
  37. [37]
    N. Stanford, M.R. Barnett, Mater. Sci. Eng. A 496, 399 (2008)CrossRefGoogle Scholar
  38. [38]
    G. Shayegan, H. Mahmoudi, R. Ghelichi, J. Villafuerte, J. Wang, M. Guagliano, H. Jahed, Mater. Des. 60, 72 (2014)CrossRefGoogle Scholar
  39. [39]
    N.J. Petch, J. Iron Steel Inst. 174, 25 (1953)Google Scholar
  40. [40]
    C.H. Caceres, G.E. Mann, J.R. Griffiths, Metall. Mater. Trans. A 42, 1950 (2011)CrossRefGoogle Scholar
  41. [41]
    S.H. Park, H. Yu, J.H. Bae, C.D. Yim, B.S. You, J. Alloys Compd. 545, 139 (2012)CrossRefGoogle Scholar
  42. [42]
    H. Zengin, Y. Turen, Mater. Chem. Phys. 214, 421 (2018)CrossRefGoogle Scholar
  43. [43]
    M.R. Barnett, Mater. Sci. Eng. A 464, 8 (2007)CrossRefGoogle Scholar
  44. [44]
    A. Chapuis, J.H. Driver, Acta Mater. 59, 1986 (2011)CrossRefGoogle Scholar
  45. [45]
    S. Kleiner, P.J. Uggowitzer, Mater. Sci. Eng. A 379, 258 (2004)CrossRefGoogle Scholar
  46. [46]
    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew, Acta Mater. 55, 2101 (2007)CrossRefGoogle Scholar
  47. [47]
    H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, Q. Liu, Acta Mater. 128, 313 (2017)CrossRefGoogle Scholar
  48. [48]
    M.E. Turan, S. Ozcelik, F. Husem, H. Ahlatci, Y. Sun, I. Tozlu, Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 232, 589 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huseyin Zengin
    • 1
    Email author
  • Yunus Turen
    • 1
  • Muhammet Emre Turan
    • 1
  • Fatih Aydın
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringKarabuk UniversityKarabükTurkey

Personalised recommendations