Advertisement

Modeling the Dynamic Recrystallization of Mg–11Gd–4Y–2Zn–0.4Zr Alloy Considering Non-uniform Deformation and LPSO Kinking During Hot Compression

  • Hong-Xuan Zhang
  • Shuai-Feng Chen
  • Ming ChengEmail author
  • Ce Zheng
  • Shi-Hong Zhang
Article
  • 17 Downloads

Abstract

Hot compression tests of Mg–11Gd–4Y–2Zn–0.4Zr alloy (GWZK114) were conducted at a deformation temperature range of 300–500 °C and a strain rate range of 0.01–10.0 s−1. Based on systematic microstructure observation, it is confirmed that long period stacking ordered (LPSO) phase displays essential and evolving roles on the dynamic recrystallization (DRX) behavior. The results indicate that the plastic deformation is mainly coordinated by simultaneous exist of LPSO kinking of lamella 14H-LPSO phase and DRX at 350–450 °C, and DRX at 500 °C. Further, it is found that the LPSO kinking induced during 350–450 °C can delay the DRX. A phenomenological DRX model of GWZK114 alloy is established to be \(X_{\text{DRX}} = 1 - \exp [ - 0.5(\frac{{\varepsilon - \varepsilon_{\text{c}} }}{{\varepsilon^{*} }})^{0.91} ]\). Non-uniform distribution of plastic strain during compression was considered via finite element method and it ensures a good prediction of DRX fraction under a large plastic strain. Meanwhile, an enhanced DRX model, taking its formulation as \(X_{\text{DRX}} = \{ 1 - \exp [ - 0.5(\frac{{\varepsilon - \varepsilon_{c} }}{{\varepsilon^{*} }})^{0.91} ]\} (\frac{T}{226.8} - 1)^{n}\), \(n = 3.82\dot{\varepsilon }^{0.083}\), is proposed for the first time to capture the hindering effect of 14H-LPSO kinking on DRX behavior. The predicted results of this enhanced DRX model agree well with the experimental cases, where 14H-LPSO kinking is dominated or partially involved (300–450 °C). Besides, a size model of DRX grains is also established and can depict the evolution of DRX grain size for all the investigated compression conditions with accounting for temperature rising at high strain rates (5 s−1 and 10 s−1).

Keywords

Mg–11Gd–4Y–2Zn–0.4Zr alloy Modeling Dynamic recrystallization Non-uniform strain LPSO kinking 

References

  1. [1]
    T.M. Pollock, Science 328, 986–987 (2010)CrossRefGoogle Scholar
  2. [2]
    J.W. Dai, X.B. Zhang, Y. Fei, Z.Z. Wang, H.M. Sui, Acta Metall. Sin. (Engl. Lett.) 31, 865–872 (2018)CrossRefGoogle Scholar
  3. [3]
    K. Hagihara, A. Kinoshita, Y. Yamasaki, M. Yamasaki, Y. Kawamura, Mater. Sci. Eng. A 560, 71–79 (2013)CrossRefGoogle Scholar
  4. [4]
    M. Yamasaki, Y. Kawamura, Scr. Mater. 60, 264–267 (2009)CrossRefGoogle Scholar
  5. [5]
    T. Itoi, K. Takahashi, H. Moriyama, H. Moriyama, M. Hirohashi, Scr. Mater. 59, 1155–1158 (2008)CrossRefGoogle Scholar
  6. [6]
    Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Scr. Mater. 55, 453–456 (2006)CrossRefGoogle Scholar
  7. [7]
    K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58, 6282–6293 (2010)CrossRefGoogle Scholar
  8. [8]
    K. Hagihara, M. Honnami, R. Matsumoto, Y. Fukusumi, H. Izuno, M. Yamasaki, T. Okamoto, T. Nakano, Y. Kawamura, Mater. Trans. 56, 943–951 (2015)CrossRefGoogle Scholar
  9. [9]
    X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Mater. 58, 4760–4771 (2010)CrossRefGoogle Scholar
  10. [10]
    E. Oñorbe, G. Garcés, P. Pérez, P. Adeva, J. Alloys Compd. 47, 1085–1093 (2012)Google Scholar
  11. [11]
    C. Xu, T. Nakata, X. Qiao, M. Zheng, K. Wu, S. Kamado, Sci Rep. 7, 40846 (2017)CrossRefGoogle Scholar
  12. [12]
    D. Zhang, Z. Tan, Q. Huo, Z. Xiao, Z. Fang, X. Yang, Mater. Sci. Eng. A 715, 389–403 (2018)CrossRefGoogle Scholar
  13. [13]
    B.J. Lv, J. Peng, Y. Peng, A.T. Tang, F.S. Pan, Mater. Sci. Eng. A 579, 209–216 (2013)CrossRefGoogle Scholar
  14. [14]
    W. Yuan, S.K. Panigrahi, J.Q. Su, R.S. Mishra, Scr. Mater. 65, 994–997 (2011)CrossRefGoogle Scholar
  15. [15]
    J.A. Del Valle, F. Carreño, O.A. Ruano, Acta Mater. 54, 4247–4259 (2006)CrossRefGoogle Scholar
  16. [16]
    M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52, 5093–5103 (2004)CrossRefGoogle Scholar
  17. [17]
    X.H. Huang, K. Suzuki, Y. Chino, M. Mabuchi, J. Alloys Compd. 632, 94–102 (2015)CrossRefGoogle Scholar
  18. [18]
    T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61, 644–647 (2009)CrossRefGoogle Scholar
  19. [19]
    I. Schindler, P. Kawulok, E. Hadasik, D. Kuc, JMEPEG 22, 890–897 (2013)CrossRefGoogle Scholar
  20. [20]
    Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, M.X. Liang, Mater. Sci. Eng. A 485, 487–491 (2008)CrossRefGoogle Scholar
  21. [21]
    G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, W.T. Ku, W.J. Song, Mater. Sci. Eng. A 528, 8051–8059 (2011)CrossRefGoogle Scholar
  22. [22]
    J. Liu, Z.S. Cui, L.Q. Ruan, Mater. Sci. Eng. A 529, 300–310 (2011)CrossRefGoogle Scholar
  23. [23]
    E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127–136 (1996)CrossRefGoogle Scholar
  24. [24]
    A. Najafizadeh, J.J. Jonas, ISIJ Int. 46, 1679–1684 (2006)CrossRefGoogle Scholar
  25. [25]
    B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, Mater. Sci. Eng. A 599, 150–159 (2014)CrossRefGoogle Scholar
  26. [26]
    J. Yu, Z. Zhang, Q. Wang, X. Yin, J. Cui, H. Qi, J. Alloys Compd. 704, 382–389 (2017)CrossRefGoogle Scholar
  27. [27]
    G. Zhang, Z. Zhang, Y. Du, Z. Yan, X. Che, Materials 11, 2092 (2018)CrossRefGoogle Scholar
  28. [28]
    Y. Du, Dissertation, North University of China, 2018 (in Chinese) Google Scholar
  29. [29]
    C.J. Wang, Z.G. Zhou, A. Holmqvist, H. Zhang, Y. Li, G. Adell, X.F. Sun, AIMM 17, 530–535 (2009)Google Scholar
  30. [30]
    X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, X.Z. Han, Z.Y. Chen, Metall. Mater. Trans. A 48, 3060–3072 (2017)CrossRefGoogle Scholar
  31. [31]
    C.M. Sellars, Mater. Sci. Technol. 6, 1072–1081 (1990)CrossRefGoogle Scholar
  32. [32]
    C.M. Sellars, Metal Sci. 13, 187–194 (1979)CrossRefGoogle Scholar
  33. [33]
    T. Chandra, J.J. Jonas, Metall. Trans. 1, 2079–2082 (1970)CrossRefGoogle Scholar
  34. [34]
    D.R. Askeland, W.J. Wright, Essentials of Materials Science & Engineering (Cengage Learning, Singapore, 2013), p. 233Google Scholar
  35. [35]
    J. Su, M. Sanjari, A.S.H. Kabir, I.H. Jung, J.J. Jonas, S. Yue, H. Utsunomiya, Mater. Sci. Eng. A 636, 582–592 (2015)CrossRefGoogle Scholar
  36. [36]
    C.J. Chen, Q.D. Wang, D.D. Yin, J. Alloys Compd. 487, 560–563 (2009)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hong-Xuan Zhang
    • 1
    • 2
  • Shuai-Feng Chen
    • 1
  • Ming Cheng
    • 1
    Email author
  • Ce Zheng
    • 1
    • 3
  • Shi-Hong Zhang
    • 1
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations