Advertisement

Element Segregation and Solidification Behavior of a Nb, Ti, Al Co-Strengthened Superalloy ЭК151

  • Yuan-Guo Tan
  • Fang Liu
  • An-Wen Zhang
  • Da-Wei Han
  • Xiao-Yu Yao
  • Wei-Wei Zhang
  • Wen-Ru SunEmail author
Article
  • 7 Downloads

Abstract

The as-cast microstructure, element segregation and solidification behavior of a multi-alloyed superalloy ЭК151 have been investigated. The results show that the severe element segregation leads to the complicated precipitations at the inter-dendritic region, including η-Ni3(Ti, Nb), eutectic (γ + γ′) and Laves, which shows the characteristics of both Ti, Al-strengthened and Nb-strengthened alloys. Differential thermal analysis, heating and quenching tests reveal the solidification sequence as follows: Liquids → γ matrix → (Nb, Ti)C → η-Ni3(Ti, Nb) → eutectic (γ + γ′) → Laves. The melting points are between 1250 and 1260 °C for (Nb, Ti)C, between 1200 and 1210 °C for η phase, between 1180 and 1190 °C for eutectic (γ + γ′) and Laves. γ′ initially precipitates from matrix at 1150 °C and achieves the maximum precipitation at 1130 °C. According to the microstructure evolution captured during solidification and composition analysis by an energy dispersive spectrometer and electron probe microanalyzer, (Nb, Ti)/Al ratio is put forward to explain the formation of η-Ni3(Ti, Nb) and eutectic (γ + γ′). The solidification of γ matrix increased the Nb, Ti concentration in the residual liquids, so the high (Nb, Ti)/Al ratio would result in the formation of η-Ni3(Ti, Nb); the precipitation of the phase consumed Nb and Ti and decreased the (Nb, Ti)/Al ratio in the liquid, which led to the precipitation of eutectic (γ + γ′). Laves formed by the sides of η-Ni3(Ti, Nb) and in front of the eutectic (γ + γ′) after Al, Ti were further depleted by the two phases and Cr, Co, Mo were rejected to liquids.

Keywords

Superalloy ЭК151 Solidification Eutectic (γ + γ′) η-Ni3(Ti, Nb) Laves 

References

  1. [1]
    E.B. Chabina, B.S. Lomberg, E.V. Filonova, S.V. Ovsepyan, M.M. Bakradze, Trudy VIAM 9, 3 (2015)CrossRefGoogle Scholar
  2. [2]
    M.M. Bakradze, S.V. Ovsepyan, S.A. Shugaev, M.N. Letnikov, Trudy VIAM 9, 1 (2013)Google Scholar
  3. [3]
    Z.N. Bi, J.L. Qu, J.H. Du, X.Y. Peng, C.S. Yi, X.L. Peng, J. Iron Steel Res. Int. 23, 263 (2011)Google Scholar
  4. [4]
    M.M. Bakradze, B.S. Lomberg, S.A. Sidorov, M.V. Bubnov, Trudy VIAM 6, 2 (2017)CrossRefGoogle Scholar
  5. [5]
    Z.N. Bi, J.L. Qu, J.H. Du, X.Y. Peng, C.S. Yi, X.L. Peng, Rare Metal Mater. Eng. 42, 919 (2013)Google Scholar
  6. [6]
    G.D. Zhao, L.X. Yu, F. Qi, F. Liu, W.R. Sun, Z.Q. Hu, Acta Metall. Sin. (Engl. Lett.) 29, 518 (2016)CrossRefGoogle Scholar
  7. [7]
    Z.J. Miao, A.D. Shan, Y.B. Wu, J. Lu, Y. Hu, J.L. Liu, H.W. Song, Trans. Nonferrous Met. Soc. China 22, 318 (2012)CrossRefGoogle Scholar
  8. [8]
    H.W. Zhang, X.Z. Qin, X.W. Li, L.Z. Zhou, Mater. Sci. Eng. A 711, 303 (2018)CrossRefGoogle Scholar
  9. [9]
    H.W. Zhang, X.Z. Qin, X.W. Li, L.Z. Zhou, Acta Metall. Sin. (Engl. Lett.) 53, 684 (2017)Google Scholar
  10. [10]
    L.T. Chang, H. Jin, W.R. Sun, J. Alloys Compd. 653, 266 (2015)CrossRefGoogle Scholar
  11. [11]
    A.W. Zhang, Y. Yang, S. Zhang, D. Zhang, W.H. Zhang, D.W. Han, F. Qi, Y.G. Tan, X. Xin, W.R. Sun, Acta Metall. Sin. (Engl. Lett.) (2018).  https://doi.org/10.1007/s40195-018-0834-1 Google Scholar
  12. [12]
    L. Wang, J.X. Dong, Y.L. Tian, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater. 15, 594 (2008)Google Scholar
  13. [13]
    Z.J. Miao, A.D. Shan, W. Wang, L.U. Jun, X.U. Wen-Liang, H.W. Song, Trans. Nonferrous Met. Soc. China 21, 236 (2011)CrossRefGoogle Scholar
  14. [14]
    B.L. Sheng, X.W. Wei, Acta Metall. Sin. (Engl. Lett.) 16, 335 (2003)Google Scholar
  15. [15]
    Z. Li, G.Q. Zhang, Z.H. Zhang, S.F. Tian, Acta Metall. Sin. (Engl. Lett.) 17, 205 (2004)Google Scholar
  16. [16]
    J. Hou, F.F. Han, X.X. Ye, B. Leng, M. Liu, Y.L. Liu, X.T. Zhou, Acta Metall. Sin. (Engl. Lett.) 32, 401 (2019)CrossRefGoogle Scholar
  17. [17]
    D.H. Kim, Acta Metall. Sin. (Engl. Lett.) 18, 33 (2005)Google Scholar
  18. [18]
    S.S. Seo, I.S. Kim, J.H. Lee, C.Y. Jo, H. Miyahara, K. Ogi, Trans. A-Phys. Metall. Mater. Sci. 38, 883 (2007)CrossRefGoogle Scholar
  19. [19]
    J.J. Ruan, N. Ueshima, K. Oikawa, J. Alloys Compd. 737, 83 (2018)CrossRefGoogle Scholar
  20. [20]
    Y.F. Guo, M.Y. Sun, B. Xu, D.Z. Li, J. Mater. Process. Technol. 249, 202 (2017)CrossRefGoogle Scholar
  21. [21]
    G.D. Zhao, G.L. Yang, F. Liu, Acta Metall. Sin. (Engl. Lett.) 30, 887 (2017)CrossRefGoogle Scholar
  22. [22]
    E.V. Melnik, Dopovidi Akademii Nauk Ukrainskoi Rsr Seriya a-Fiziko-Matematichni Ta Technichni Nauki 10, 949 (1974)Google Scholar
  23. [23]
    Y.C. Wang, G.L. Wu, C.H. Zhao, J. Dong, T. Yu, J. Iron Steel Res. Int. 23, 64 (2011)Google Scholar
  24. [24]
    X.L. Pan, W.R. Sun, Z. Li, S.L. Yang, S.R. Guo, H.C. Yang, Z.Q. Hu, Rare Metal Mater. Eng. 39, 55 (2010)CrossRefGoogle Scholar
  25. [25]
    S.H. Chen, M.J. Zhao, L.J. Rong, Acta Metall. Sin. 48, 1335 (2012)CrossRefGoogle Scholar
  26. [26]
    C.Y. Cui, Y.F. Gu, D.H. Ping, H. Harada, T. Fukuda, Mater. Sci. Eng. A 485, 651 (2008)CrossRefGoogle Scholar
  27. [27]
    J. Guo, Material Science and Engineering for Superalloys (Science Press, Beijing, 2008)Google Scholar
  28. [28]
    H. Li, H. Song, W. Liu, Metall. Mater. Trans. A 2, 915 (2019)CrossRefGoogle Scholar
  29. [29]
    T. Hara, S. Kobayashi, T. Ueno, K. Oikawa, J. Cryst. Growth 506, 91 (2019)CrossRefGoogle Scholar
  30. [30]
    D.W. Han, F. Liu, B. Zhang, W.R. Sun, Acta Metall. Sin. (Engl. Lett.) 31, 1224 (2018)CrossRefGoogle Scholar
  31. [31]
    L.X. Yu, W.R. Sun, Z.B. Zhang, W.H. Zhang, F. Liu, X. Xin, F. Qi, D. Jia, Z.Q. Hu, Mater. Res. Innov. 19, 68 (2015)CrossRefGoogle Scholar
  32. [32]
    M. Yamamoto, A. Nitta, T. Ogata, J. Soc. Mater. Sci. Jpn. 50, 510 (2001)CrossRefGoogle Scholar
  33. [33]
    C.Y. Jo, N. Jones, S.J. Choe, D. Knowles, Met. Mater. Int. 4, 1017 (1998)CrossRefGoogle Scholar
  34. [34]
    R. Bao, Y.I. Jian-Hong, Y.D. Peng, H.Z. Zhang, L.I. Ai-Kun, Trans. Nonferrous Met. Soc. China 22, 853 (2012)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuan-Guo Tan
    • 1
    • 2
  • Fang Liu
    • 1
  • An-Wen Zhang
    • 1
    • 2
  • Da-Wei Han
    • 1
  • Xiao-Yu Yao
    • 1
    • 2
  • Wei-Wei Zhang
    • 1
    • 2
  • Wen-Ru Sun
    • 1
    Email author
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.University of Science and Technology of ChinaHefeiChina

Personalised recommendations