Masing Behavior and Microstructural Change of Quenched and Tempered High-Strength Steel Under Low Cycle Fatigue

  • Feng-Mei Bai
  • Hong-Wei ZhouEmail author
  • Xiang-Hua LiuEmail author
  • Meng Song
  • Ya-Xin Sun
  • Hai-Long Yi
  • Zhen-Yi Huang


Low cycle fatigue behavior of a quenched and tempered high-strength steel (Q960E) was studied in the strain amplitude ranging from ± 0.5% to ± 1.2% at room temperature. As a result of fatigue loading, the dislocation structural evolution and fracture mechanism were examined and studied by transmission electron microscopy and scanning electron microscopy (SEM). The results showed that this Q960E steel showed cyclic softening at different strain amplitudes, and the softening tendency was more apparent at strain amplitude of ± (0.6–1.2)% than that at ± 0.5%. The reduction in dislocation density with increasing strain amplitude is responsible for the softening tendency of cyclic stress with the strain amplitude. The material illustrates near-Masing behavior at strain amplitude ranging from ± 0.6% to ± 1.2%. The near-Masing behavior of Q960E high-strength steel can be the result of stability of martensite lath at different strain amplitudes. Partial transformation from martensite laths to dislocation cells is responsible for the derivation from ideal Masing behavior. In the SEM examination of fracture surfaces, transgranular cracks initiate on the sample surface. Striations can be found during the crack propagation stage.


High-strength steel Low cycle fatigue Near-Masing behavior Martensite lath 



The authors thank the financial supports of the National Natural Science Foundation of China (No. 51674079) and Anhui Provincial Natural Science Foundation (Nos. KJ2018A0062, KJ2017A128 and KJ2017A066).


  1. [1]
    R. Branco, J.D. Costa, F.V. Antunes, Theor. Appl. Fract. Mec. 58(1), 28 (2012)CrossRefGoogle Scholar
  2. [2]
    S. Glodež, M. Knez, N. Jezernik, J. Kramberger, Eng. Fail. Anal. 16(7), 2348 (2009)CrossRefGoogle Scholar
  3. [3]
    P.C. Chakraborti, M.K. Mitra, Int. J. Fatigue 28(3), 194 (2006)CrossRefGoogle Scholar
  4. [4]
    P. Verma, N.C.S. Srinivas, S.R. Singh, V. Singh, Mater. Sci. Eng., A 652, 30 (2016)CrossRefGoogle Scholar
  5. [5]
    A. Chauhan, D. Litvinov, J. Aktaa, Int. J. Fatigue 93, Part 1,1 (2016)Google Scholar
  6. [6]
    R.K. Dutta, M. Amirthalingam, M.J.M. Hermans, I.M. Richardson, Mater. Sci. Eng., A 559, 86 (2013)CrossRefGoogle Scholar
  7. [7]
    W.S. Chang, J. Mater. Sci. 37(10), 1973 (2002)CrossRefGoogle Scholar
  8. [8]
    B. Jiang, M. Wu, M. Zhang, F. Zhao, Z. Zhao, Y. Liu, Mater. Sci. Eng., A 707, 306 (2017)CrossRefGoogle Scholar
  9. [9]
    J.C. Zhang, H.S. Di, Y.G. Deng, S.C. Li, R.D.K. Misra, Mater. Sci. Eng., A 645, 232 (2015)CrossRefGoogle Scholar
  10. [10]
    M.C. Marinelli, I. Alvarez-Armas, U. Krupp, Mater. Sci. Eng., A 684, 254 (2017)CrossRefGoogle Scholar
  11. [11]
    J. Kang, F.C. Zhang, X.Y. Long, B. Lv, Mater. Sci. Eng., A 666, 88 (2016)CrossRefGoogle Scholar
  12. [12]
    Y.J. Li, D. Liu, W.N. Zhang, J. Kang, D. Chen, G. Yuan, G.D. Wang, Mater. Lett. 230, 36 (2018)CrossRefGoogle Scholar
  13. [13]
    F. Peng, Y. Xu, X. Gu, Y. Wang, X. Liu, J. Li, Mater. Sci. Eng., A 723, 247 (2018)CrossRefGoogle Scholar
  14. [14]
    X.U. Zhenlin, J. Fang, Hot Working Technology 45(15), 4 (2017)Google Scholar
  15. [15]
    B. Fournier, M. Sauzay, A. Rarcelo, F. Barcelo, A. Pineau, J. Nucl. Mater. 71, 386–388 (2009)Google Scholar
  16. [16]
    H.W. Zhou, Y.Z. He, H. Zhang, Y.W. Cen, Int. J. Fatigue 47, 83 (2013)CrossRefGoogle Scholar
  17. [17]
    B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, A. Pineau, Int. J. Fatigue 30(4), 649 (2008)CrossRefGoogle Scholar
  18. [18]
    S.L. Mannan, M. Valsan, Int. J. Mech. Sci. 48(2), 160 (2006)CrossRefGoogle Scholar
  19. [19]
    H.W. Zhou, Y.Z. He, M. Cui, Y.W. Cen, J.Q. Jiang, Int. J. Fatigue 56, 1 (2013)CrossRefGoogle Scholar
  20. [20]
    H.W. Zhou, Y.Z. He, Y.W. Cen, J.Q. Jiang, Adv. Mater. Res. 815, 875 (2013)CrossRefGoogle Scholar
  21. [21]
    F. Ellyin, Fatigue damage, crack growth and life prediction (Springer, Netherlands, 1997), pp. 278–380CrossRefGoogle Scholar
  22. [22]
    D. Lefebvre, F. Ellyin, Int. J. Fatigue 6(1), 9 (1984)CrossRefGoogle Scholar
  23. [23]
    P.P. Sarkar, P.S. De, S.K. Dhua, P.C. Chakraborti, Mater. Sci. Eng., A 707, 125 (2017)CrossRefGoogle Scholar
  24. [24]
    K. Guguloth, S. Sivaprasad, D. Chakrabarti, S. Tarafder, Mater. Sci. Eng., A 604, 196 (2014)CrossRefGoogle Scholar
  25. [25]
    S. Goyal, S. Mandal, P. Parameswaran, R. Sandhya, C.N. Athreya, K. Laha, Mater. Sci. Eng., A 696, 407 (2017)CrossRefGoogle Scholar
  26. [26]
    S. Sivaprasad, S.K. Paul, A. Das, N. Narasaiah, S. Tarafder, Mater. Sci. Eng., A 527(26), 6858 (2010)CrossRefGoogle Scholar
  27. [27]
    A. Plumtree, H.A. Abdel-Raouf, Int. J. Fatigue 23(9), 799 (2001)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Feng-Mei Bai
    • 1
    • 3
  • Hong-Wei Zhou
    • 2
    Email author
  • Xiang-Hua Liu
    • 1
    Email author
  • Meng Song
    • 2
  • Ya-Xin Sun
    • 2
  • Hai-Long Yi
    • 1
  • Zhen-Yi Huang
    • 3
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.School of Materials Science and Engineering, Anhui Key Lab of Materials Science and ProcessingAnhui University of TechnologyMaanshanChina
  3. 3.School of Metallurgical EngineeringAnhui University of TechnologyMaanshanChina

Personalised recommendations