Advertisement

Biodegradation Behavior of Coated As-Extruded Mg–Sr Alloy in Simulated Body Fluid

  • Ming-Chun Zhao
  • Ying-Chao Zhao
  • Deng-Feng YinEmail author
  • Shuo Wang
  • Yong-Ming Shangguan
  • Chao Liu
  • Li-Li Tan
  • Ci-Jun Shuai
  • Ke Yang
  • Andrej Atrens
Article
  • 2 Downloads

Abstract

As-extruded Mg–Sr alloy, a kind of promising biodegradable biomedical material, was coated using micro-arc oxidation and also using a phosphate conversion coating. The corrosion behaviors were investigated using Hanks’ solution. The corrosion of the as-extruded Mg–Sr alloy became more serious with increasing immersion time; that is, the corrosion pits became more numerous, larger and deeper. The micro-arc oxidation coating and the phosphate conversion coating were effective in improving the corrosion resistance of the as-extruded Mg–Sr alloy. The micro-arc oxidation coating was much more effective. Moreover, the as-extruded Mg–Sr alloy and the coated as-extruded Mg–Sr alloy exhibited lower corrosion rates than the as-cast Mg–Sr alloy and the corresponding coated as-cast Mg–Sr alloy, indicating that the corrosion properties of the coated samples are dependent on their substrates. The finer microstructure of the substrate of the as-extruded condition corroded much slower. The corrosion resistance of the coated Mg–Sr alloy depended on the coating itself and on the microstructure of the substrate.

Keywords

Mg alloy Micro-arc oxidation coating Phosphate conversion coating Biodegradation Corrosion resistance 

Notes

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (No. 51874368).

References

  1. [1]
    C. Wang, H.T. Yang, X. Li, Y.F. Zheng, J. Mater. Sci. Technol. 32, 909 (2016)CrossRefGoogle Scholar
  2. [2]
    Y.B. Zhao, L.Q. Shi, L.Y. Cui, C.L. Zhang, S.Q. Li, R.C. Zeng, F. Zhang, Z.L. Wang, Acta Metall. Sin. (Engl. Lett.) 31, 180 (2018)CrossRefGoogle Scholar
  3. [3]
    R.C. Zeng, L.J. Liu, S.Q. Li, Y.H. Zou, F. Zhang, Y.N. Yang, H.Z. Cui, E.H. Han, Acta Metall. Sin. (Engl. Lett.) 26, 681 (2013)CrossRefGoogle Scholar
  4. [4]
    A. Atrens, G.L. Song, M. Liu, Z. Shi, F. Cao, M.S. Dargusch, Adv. Eng. Mater. 17, 400 (2015)CrossRefGoogle Scholar
  5. [5]
    W. Zhang, L.L. Tan, D.R. Ni, J.X. Chen, Y.C. Zhao, L. Liu, C.J. Shuai, K. Yang, A. Atrens, M.C. Zhao, J. Mater. Sci. Technol. 35, 777 (2019)CrossRefGoogle Scholar
  6. [6]
    R. Xu, M.C. Zhao, Y.C. Zhao, L. Liu, C. Liu, C.D. Gao, C.J. Shuai, A. Atrens, Mater. Lett. 237, 253 (2019)CrossRefGoogle Scholar
  7. [7]
    X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, L. Qin, K. Yang, Mater. Sci. Eng. C 93, 565 (2018)CrossRefGoogle Scholar
  8. [8]
    X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, C. Shuai, K. Yang, Mater. Sci. Eng. B 229, 105 (2018)CrossRefGoogle Scholar
  9. [9]
    J. Buehler, P. Chappuis, J.L. Saffar, Y. Tsouderos, A. Vignery, Bone 29, 176 (2001)CrossRefGoogle Scholar
  10. [10]
    C.J. Chung, H.Y. Long, Acta Biomater. 7, 4081 (2011)CrossRefGoogle Scholar
  11. [11]
    W.D. Wang, J.J. Han, X. Yang, M. Li, P. Wan, L.L. Tan, Y. Zhang, K. Yang, Mater. Sci. Eng. B 214, 26 (2016)CrossRefGoogle Scholar
  12. [12]
    Y. Shangguan, P. Wan, L.L. Tan, X.M. Fan, L. Qin, K. Yang, J. Colloid Interface Sci. 481, 1 (2016)CrossRefGoogle Scholar
  13. [13]
    C. Liu, P. Wan, L. Tan, K. Wang, K. Yang, J. Orthop. Transl. 2, 139 (2014)Google Scholar
  14. [14]
    J. Han, P. Wan, Y. Ge, X. Fan, L. Tan, J. Li, K. Yang, Mater. Sci. Eng. C 58, 799 (2016)CrossRefGoogle Scholar
  15. [15]
    Y. Shangguan, L. Sun, P. Wan, L. Tan, C. Wang, X. Fan, L. Qin, K. Yang, Mater. Sci. Eng. C 69, 95 (2016)CrossRefGoogle Scholar
  16. [16]
    H.S. Brar, J. Wong, M.V. Manuel, J. Mech. Behav. Biomed. 7, 87 (2012)CrossRefGoogle Scholar
  17. [17]
    Y. Li, C. Wen, D. Mushahary, R. Sravanthi, N. Harishankar, G. Pande, P. Hodgson, Acta Biomater. 3177, 8 (2012)Google Scholar
  18. [18]
    R.V. Suganthi, K. Elayaraja, M.I. Ahymah Joshy, V. Sarath Chandra, E.K. Girija, S. Narayana Kalkura, Mater. Sci. Eng. C 31, 593 (2011)CrossRefGoogle Scholar
  19. [19]
    M. Bornapour, N. Muja, D. Shum-Tim, M. Cerruti, M. Pekguleryuz, Acta Biomater. 9, 5319 (2013)CrossRefGoogle Scholar
  20. [20]
    L.Y. Cui, S.D. Gao, P.P. Li, R.C. Zeng, F. Zhang, S.Q. Li, E.H. Han, Corros. Sci. 118, 84 (2017)CrossRefGoogle Scholar
  21. [21]
    R.C. Zeng, L.Y. Cui, K. Jiang, R. Liu, B.D. Zhao, Y.F. Zheng, A.C.S. Appl, Mater. Interfaces 8, 10014 (2016)CrossRefGoogle Scholar
  22. [22]
    X.B. Chen, D.R. Nisbet, R.W. Li, P.N. Smith, T.B. Abbott, M.A. Easton, D.H. Zhang, N. Birbilis, Acta Biomater. 10, 1463 (2014)CrossRefGoogle Scholar
  23. [23]
    C. Liu, Q. Shi, W. Yan, C. Shen, K. Yang, Y. Shan, M. Zhao, J. Mater. Sci. Technol. 35, 266 (2019)CrossRefGoogle Scholar
  24. [24]
    M.C. Zhao, Y. Deng, X. Zhang, Scr. Mater. 58, 560 (2008)CrossRefGoogle Scholar
  25. [25]
    F. Cao, Z. Shi, G.L. Song, M. Liu, M.S. Dargusch, A. Atrens, Corros. Sci. 90, 176 (2015)CrossRefGoogle Scholar
  26. [26]
    T.H. Van Steenkiste, J.R. Smith, R.E. Teets, Surf. Coat. Technol. 154, 237 (2002)CrossRefGoogle Scholar
  27. [27]
    T. Fu, Z.F. Zhou, Y.M. Zhou, X.D. Zhu, Q.F. Zeng, C.P. Wang, K.Y. Li, J. Lu, Surf. Coat. Technol. 207, 555 (2012)CrossRefGoogle Scholar
  28. [28]
    W.X. Li (ed.), Magnesium and Magnesium Alloys (First Edition in 2005) (Central South University Press, Changsha, 2005), p. 47Google Scholar
  29. [29]
    Z. Yao, L. Li, Z. Jiang, Appl. Surf. Sci. 255, 6724 (2009)CrossRefGoogle Scholar
  30. [30]
    M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Corros. Sci. 50, 3168 (2008)CrossRefGoogle Scholar
  31. [31]
    M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Adv. Eng. Mater. 10, 93 (2008)CrossRefGoogle Scholar
  32. [32]
    G.L. Makar, J. Kruger, A. Joshi, in Advances in Magnesium Alloys and Composites, ed. by H.G. Paris, W.H. Hunt (TMS, Warrendale, 1988)Google Scholar
  33. [33]
    S. Virtanen, Mater. Sci. Eng. B 20, 1600 (2011)CrossRefGoogle Scholar
  34. [34]
    M.C. Zhao, P. Schmutz, S. Brunner, M. Liu, G.L. Song, A. Atrens, Corros. Sci. 51, 1277 (2009)CrossRefGoogle Scholar
  35. [35]
    L. Wang, L. Chen, Z. Yan, W. Fu, Appl. Surf. Sci. 205, 1651 (2010)Google Scholar
  36. [36]
    G. Song, D. Stjohn, Corros. Sci. 46, 1381 (2004)CrossRefGoogle Scholar
  37. [37]
    Y.C. Zhao, M.C. Zhao, R. Xu, L. Liu, J.X. Tao, C. Gao, C. Shuai, A. Atrens, J. Alloys Compd. 770, 549 (2019)CrossRefGoogle Scholar
  38. [38]
    Y.J. Lu, L.L. Tan, H.L. Xiang, B.C. Zhang, K. Yang, Acta Metall. Sin. (Engl. Lett.) 25, 287 (2012)Google Scholar
  39. [39]
    M.C. Zhao, M. Liu, G.L. Song, A. Atrens, Corros. Sci. 50, 1939 (2008)CrossRefGoogle Scholar
  40. [40]
    S. Hiromoto, M. Tomozawa, N. Maruyama, J. Mech. Behav. Biomed. Mater. 25, 1 (2013)CrossRefGoogle Scholar
  41. [41]
    Y.Q. Wang, M.Y. Zheng, K. Wu, Mater. Lett. 59, 1727 (2005)CrossRefGoogle Scholar
  42. [42]
    L.Y. Li, L.Y. Cui, B. Liu, R.C. Zeng, X.B. Chen, S.Q. Li, Z.L. Wang, E.H. Han, Appl. Surf. Sci. 465, 1066 (2019)CrossRefGoogle Scholar
  43. [43]
    L.Y. Li, L.Y. Cui, R.C. Zeng, S.Q. Li, X.B. Chen, Y.F. Zheng, M.B. Kannan, Acta Biomater. 79, 23 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ming-Chun Zhao
    • 1
  • Ying-Chao Zhao
    • 1
  • Deng-Feng Yin
    • 1
    Email author
  • Shuo Wang
    • 1
  • Yong-Ming Shangguan
    • 2
  • Chao Liu
    • 1
  • Li-Li Tan
    • 2
  • Ci-Jun Shuai
    • 1
  • Ke Yang
    • 2
  • Andrej Atrens
    • 3
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.Division of MaterialsThe University of QueenslandBrisbaneAustralia

Personalised recommendations