Advertisement

Correlation Between Crystal Rotation and Redundant Shear Strain in Rolled Single Crystals: A Crystal Plasticity FE Analysis

  • Hui Wang
  • Cheng Lu
  • Kiet Tieu
  • Yu Liu
  • Rui Wang
  • Jintao Li
Article

Abstract

The correlation between crystal rotation and redundant shear strain in rolled single crystals was investigated by using the crystal plasticity finite element (CPFE) model in this paper. The deformation in aluminium single crystals of four representative orientations (rotated-Cube, Goss, Copper, and Brass) after rolling and plain strain compression was simulated, and the predictions have been validated by the experimental observations. In the rotated-Cube and Goss, the redundant shear strain and crystal rotation were in the same pattern, alternating along the thickness, while the relation between them was not obvious for the Copper and Brass due to their asymmetrical distributions of activated slip systems. The relations between slip system activation, crystal rotation, and shear strain were investigated based on the CPFE model, and the correlation between shear strain and crystal rotation has been built.

Keywords

Crystal plasticity finite element Single crystal Crystal rotation Shear strain Orientation stability 

Notes

Acknowledgements

The simulation was performed on the HPC cluster of the University of Wollongong.

References

  1. [1]
    H. Paul, J.H. Driver, Z. Jasieński, Acta Mater. 50, 815 (2002)CrossRefGoogle Scholar
  2. [2]
    N. Afrin, M.Z. Quadir, W. Xu, M. Ferry, Acta Mater. 60, 6288 (2012)CrossRefGoogle Scholar
  3. [3]
    Q. Liu, J. Wert, N. Hansen, Acta Mater. 48, 4267 (2000)CrossRefGoogle Scholar
  4. [4]
    H. Paul, J. Driver, C. Maurice, M. Miszczyk, D. Piot, Arch. Metall. Mater. 54, 65 (2009)Google Scholar
  5. [5]
    K. Kashihara, H. Inagaki, Ceram. Trans. 201, 453 (2008)CrossRefGoogle Scholar
  6. [6]
    Z.J. Li, A. Godfrey, Q. Liu, Acta Mater. 52, 149 (2004)CrossRefGoogle Scholar
  7. [7]
    M. Wrobel, S. Dymek, M. Blicharski, S. Gorczyca, Mater. Res. Adv. Technol. 85, 415 (1994)Google Scholar
  8. [8]
    Q. Liu, N. Hansen, Proc. R. Soc. A 454, 2555 (1998)CrossRefGoogle Scholar
  9. [9]
    J.A. Wert, Acta Mater. 50, 3125 (2002)CrossRefGoogle Scholar
  10. [10]
    P. Van Houtte, S. Li, M. Seefeldt, L. Delannay, Int. J. Plast. 21, 589 (2005)CrossRefGoogle Scholar
  11. [11]
    H.R. Wenk, P. Van Houtte, Rep. Prog. Phys. 67, 1367 (2004)CrossRefGoogle Scholar
  12. [12]
    C. Lu, G.Y. Deng, A.K. Tieu, L.H. Su, H.T. Zhu, X.H. Liu, Acta Mater. 59, 3581 (2011)CrossRefGoogle Scholar
  13. [13]
    C. Zhang, L.W. Zhang, W.F. Shen, Y.N. Xia, Y.T. Yan, Acta Metall. Sin. (Engl. Lett.) 30, 79 (2017)CrossRefGoogle Scholar
  14. [14]
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Acta Mater. 58, 1152 (2010)CrossRefGoogle Scholar
  15. [15]
    D. Raabe, F. Roters, F. Barlat, L.-Q. Chen (eds.), Continuum Scale Simulation of Engineering Materials: Fundamentals-Microstructures-Process Applications (Wiley, Weinheim, 2004)Google Scholar
  16. [16]
    K. Kashihara, Y. Tsujimoto, D. Terada, N. Tsuji, Mater. Charact. 75, 129 (2012)CrossRefGoogle Scholar
  17. [17]
    T. Inoue, N. Tsuji, Comput. Mater. Sci. 46, 261 (2009)CrossRefGoogle Scholar
  18. [18]
    A. Albou, J.H. Driver, C. Maurice, Acta Mater. 58, 3022 (2010)CrossRefGoogle Scholar
  19. [19]
    R.J. Asaro, J. Appl. Mech. 50, 921 (1983)CrossRefGoogle Scholar
  20. [20]
    R.J. Asaro, A. Needleman, Acta Metall. 33, 923 (1985)CrossRefGoogle Scholar
  21. [21]
    T.-Y. Wu, J.L. Bassani, C. Laird, Proc. R. Soc. A 435, 20 (1991)CrossRefGoogle Scholar
  22. [22]
    J.L. Bassani, T.-Y. Wu, Proc. R. Soc. A 435, 21 (1991)CrossRefGoogle Scholar
  23. [23]
    G. Lin, K.S. Havner, Int. J. Plast. 12, 695 (1996)CrossRefGoogle Scholar
  24. [24]
    P. Franciosi, M. Berveiller, A. Zaoui, Acta Metall. 28, 273 (1980)CrossRefGoogle Scholar
  25. [25]
    Q. Liu, C. Maurice, J. Driver, N. Hansen, Metall. Mater. Trans. A 29, 2333 (1998)CrossRefGoogle Scholar
  26. [26]
    D. Guanyu, Dissertation, University of Wollongong, 2014Google Scholar
  27. [27]
    L.Y. Si, C. Lu, N.N. Huynh, A.K. Tieu, X.H. Liu, J. Mater. Process. Technol. 201, 79 (2008)CrossRefGoogle Scholar
  28. [28]
    P. Wei, C. Lu, H. Liu, L. Su, G. Deng, K. Tieu, Crystals 7, 12 (2017)CrossRefGoogle Scholar
  29. [29]
    A. Godfrey, D.J. Jensen, N. Hansen, Acta Mater. 46, 835 (1998)CrossRefGoogle Scholar
  30. [30]
    R.Y. Liang, P. Yang, W.M. Mao, Acta Metall. Sin. (Engl. Lett.) 30, 895 (2017)CrossRefGoogle Scholar
  31. [31]
    Z.S. Zhu, N.P. Chen, J.L. Gu, M.G. Yan, Acta Metall. Sin. Ser. A 9, 601 (1996)Google Scholar
  32. [32]
    S. Li, F. Sun, H. Li, Acta Mater. 58, 1317 (2010)CrossRefGoogle Scholar
  33. [33]
    C.S. Lee, B.J. Duggan, Metall. Trans. A 22, 2637 (1991)CrossRefGoogle Scholar
  34. [34]
    J.X. Li, X.H. Liu, G.D. Wang, Acta Metall. Sin. (Engl. Lett.) 15, 312 (2002)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hui Wang
    • 1
  • Cheng Lu
    • 1
  • Kiet Tieu
    • 1
  • Yu Liu
    • 1
  • Rui Wang
    • 1
  • Jintao Li
    • 1
  1. 1.School of Mechanical, Materials and Mechatronic EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations