Advertisement

Corrosion of New Zirconium Claddings in 500 °C/10.3 MPa Steam: Effects of Alloying and Metallography

  • Jing-Jing Liao
  • Zhong-Bo Yang
  • Shao-Yu Qiu
  • Qian Peng
  • Zheng-Cao Li
  • Ming-Sheng Zhou
  • Hong Liu
Article
  • 11 Downloads

Abstract

With the aim of improving corrosion resistance of rod cladding for in-service and accident conditions, six new zirconium alloys (named N1–N6) have been designed. The contents of Sn and Nb were optimized for better behavior at high-temperature pressurized water, and Fe, Cr, V, Cu or Mo elements were added to the alloys to adjust the corrosion behavior. The current work focused on the rapid corrosion behavior in 500 °C/10.3 MPa steam for up to 1960 h, aiming to test the corrosion resistance at high temperature. The structure of matrix and properties of second-phase particles (SPPs) were characterized to find the main differences among these alloys. All the six alloys exhibited better corrosion resistance than N36, and N1 was shown to have the best performance. A careful analysis of the corrosion kinetics curves revealed that Cr was beneficial for severe condition. Elements Fe, Cr, V, Cu or Mo aggregated into SPPs with different concentrations and structures. This was demonstrated to be the main reason for different corrosion resistance. Due to good processing control, all alloys had a uniform structure and a uniform distribution of SPPs. As for N4, N6 and N36, the existing of large-size SPPs (450 nm) might be a contributing factor of the relatively poor corrosion resistance.

Keywords

New zirconium cladding Corrosion behavior Alloying elements Metallography Second-phase particles 

Notes

Acknowledgements

This work was funded by the Major Project of CNNC (China National Nuclear Corporation): Key Technology Research on CF4 Fuel Assembly and Associated Assembly (No. [2016] 298). The authors would like to thank Dr. Risheng Qiu at Chongqing University for help of TEM and EBSD analysis.

References

  1. [1]
    IAEA, IAEA-TECDOC 684, 177 (1993)Google Scholar
  2. [2]
    B. Cox, J. Nucl. Mater. 336, 331 (2005)CrossRefGoogle Scholar
  3. [3]
    T.R. Allen, R.J.M. Konings, A.T. Motta, Compr. Nucl. Mater. 24, 49 (2012)CrossRefGoogle Scholar
  4. [4]
    A.T. Motta, A. Couet, R.J. Comstock, Annu. Rev. Mater. Res. 45, 311 (2015)CrossRefGoogle Scholar
  5. [5]
    D. Kaczorowski, J.P. Mardon, P. Barberis, P.B. Hoffmann, J. Stevens, in Zirconium in the Nuclear Industry: 17th International Symposium, ed. by B. Comstock, P. Barberis (ASTM International, West Conshohocken, 2015), p. 159Google Scholar
  6. [6]
    Y.J. Kim, R. Rebak, Y.P. Lin, D. Lutz, D.C. Crawford, A. Kucuk, B. Cheng, J. ASTM Int. 7, 1 (2012)Google Scholar
  7. [7]
    J. Wei, P. Frankel, M. Blat, A. Ambard, R.J. Comstock, L. Hallstadius, S. Lyon, R.A. Cottis, M. Preuss, Br. Corros. J. 47, 516 (2012)Google Scholar
  8. [8]
    M. Preuss, P. Frankel, S. Lozano-Perez, D. Hudson, E. Polatidis, N. Ni, J. Wei, C. English, S. Storer, K.B. Chong, J. ASTM Int. 8, 1 (2011)CrossRefGoogle Scholar
  9. [9]
    W.Q. Liu, Q. Li, B.X. Zhou, Q.S. Yan, M.Y. Yao, Rare Met. Mater. Eng. 26, 104 (2007)Google Scholar
  10. [10]
    J.M. Kim, Y.H. Jeong, J. Nucl. Mater. 275, 74 (1999)CrossRefGoogle Scholar
  11. [11]
    J.Y. Park, B.K. Choi, S.J. Yoo, H.J. Yong, J. Nucl. Mater. 359, 59 (2006)CrossRefGoogle Scholar
  12. [12]
    J.M. Kim, H.J. Yong, Y.H. Jung, J. Mater. Process. Technol. 104, 145 (2000)CrossRefGoogle Scholar
  13. [13]
    A.T. Motta, A. Yilmazbayhan, M.J.G.D. Silva, R.J. Comstock, G.S. Was, J.T. Busby, E. Gartner, Q. Peng, H.J. Yong, J.Y. Park, J. Nucl. Mater. 371, 61 (2007)CrossRefGoogle Scholar
  14. [14]
    D. Charquet, J. Nucl. Mater. 211, 259 (1994)CrossRefGoogle Scholar
  15. [15]
    G. Choudhuri, M.K. Kumar, V. Kain, D. Srivastava, S. Basu, B.K. Shah, N. Saibaba, G.K. Dey, J. Nucl. Mater. 441, 178 (2013)CrossRefGoogle Scholar
  16. [16]
    H.J. Yong, H.G. Kim, T.H. Kim, J. Nucl. Mater. 317, 1 (2003)CrossRefGoogle Scholar
  17. [17]
    H.J. Yong, K.O. Lee, H.G. Kim, J. Nucl. Mater. 302, 9 (2002)CrossRefGoogle Scholar
  18. [18]
    J. Wei, P. Frankel, E. Polatidis, M. Blat, A. Ambard, R.J. Comstock, L. Hallstadius, D. Hudson, G.D.W. Smith, C.R.M. Grovenor, Acta Mater. 61, 4200 (2013)CrossRefGoogle Scholar
  19. [19]
    B.D.C. Bell, S.T. Murphy, R.W. Grimes, M.R. Wenman, Acta Mater. 132, 425 (2017)CrossRefGoogle Scholar
  20. [20]
    B. Wang, B. Zhou, Z. Wang, J. Huang, M. Yao, J. Zhou, Acta Metall. Sin. 28, 809 (2015)CrossRefGoogle Scholar
  21. [21]
    H.P. Zhao, M.Y. Yao, J. Huang, J.L. Zhang, J.C. Peng, B.X. Zhou, Rare Met. 2, 1 (2016)Google Scholar
  22. [22]
    M.Y. Yao, C.Y. Gao, J. Huang, J.C. Peng, X. Liang, J.L. Zhang, B.X. Zhou, Q. Li, Corros. Sci. 100, 169 (2015)CrossRefGoogle Scholar
  23. [23]
    F. Rosalbino, D. Macciò, G. Scavino, A. Saccone, Mater. Corros. 66, 1125 (2015)CrossRefGoogle Scholar
  24. [24]
    Y. Broy, F. Garzarolli, A. Seibold, L.F.V. Swam, in Zirconium in the Nuclear Industry: 12th International Symposium, ed. by G.P. Sabol, G.D. Moan (ASTM International, West Conshohocken, 2000), p. 609Google Scholar
  25. [25]
    W. Liu, L. Zhong, J. Peng, R. Liu, M. Yao, B. Zhou, Rare Met. Mater. Eng. 40, 1216 (2011)Google Scholar
  26. [26]
    M.Y. Yao, X.T. Wu, J. Huang, J.L. Zhang, X. Zhang, B.X. Zhou, Oxid. Met. 84, 1 (2015)CrossRefGoogle Scholar
  27. [27]
    G. Pan, A.M. Garde, A.R. Atwood, in Zirconium in the Nuclear Industry: 17th International Symposium, ed. by B. Comstock, P. Barberis (ASTM International, West Conshohocken, 2015), p. 607Google Scholar
  28. [28]
    D. Mitchell, A. Garde, D. Davi, Top Fuel 107, 2931 (2010)Google Scholar
  29. [29]
    M. Lindgren, G. Sundell, I. Panas, L. Hallstadius, M. Thuvander, H.O. Andrén, in Zirconium in the Nuclear Industry: 17th International Symposium, ed. by B. Comstock, P. Barberis (ASTM International, 2015)Google Scholar
  30. [30]
    U. Otgonbaatar, W. Ma, M. Youssef, B. Yildiz, J. Phys. Chem. C 118, 20122 (2014)CrossRefGoogle Scholar
  31. [31]
    J. Robertson, K. Xiong, S.J. Clark, Thin Solid Films 496, 1 (2006)CrossRefGoogle Scholar
  32. [32]
    Q.S. Fan, Z.B. Yang, J. Zhou, M.H. Shi, X. Chen, L.I. Zhong-Kui, J. Mater. Eng. 44, 110 (2016)Google Scholar
  33. [33]
    J. Zheng, W. Zhou, J. Zhang, X. Liu, Q. Feng, X. An, B. Tang, X. Zhou, H. Wang, S. Peng, J. Nucl. Mater. 491, 1 (2017)CrossRefGoogle Scholar
  34. [34]
    A. Couet, A.T. Motta, A. Ambard, D. Livigni, Corros. Sci. 119, 1 (2016)CrossRefGoogle Scholar
  35. [35]
    G. Sundell, M. Thuvander, H.O. Andrén, Corros. Sci. 102, 490 (2016)CrossRefGoogle Scholar
  36. [36]
    W. Gong, H. Zhang, C. Wu, H. Tian, X. Wang, Corros. Sci. 77, 391 (2013)CrossRefGoogle Scholar
  37. [37]
    H.G. Kim, J.Y. Park, B.K. Choi, Y.H. Jeong, J. Nucl. Mater. 374, 204 (2008)CrossRefGoogle Scholar
  38. [38]
    A. Froideval, C. Degueldre, C.U. Segre, M.A. Pouchon, D. Grolimund, Corros. Sci. 50, 1313 (2008)CrossRefGoogle Scholar
  39. [39]
    D. Pêcheur, J. Nucl. Mater. 278, 195 (2000)CrossRefGoogle Scholar
  40. [40]
    H.G. Kim, J.Y. Park, Y.H. Jeong, B.K. Choi, H.D. Cho, J. Alloys Compd. 481, 867 (2009)CrossRefGoogle Scholar
  41. [41]
    S.S. Yardley, K.L. Moore, N. Ni, J.F. Wei, S. Lyon, M. Preuss, S. Lozano-Perez, C.R.M. Grovenor, J. Nucl. Mater. 443, 436 (2013)CrossRefGoogle Scholar
  42. [42]
    J. Huang, M.Y. Yao, C.Y. Gao, X. Liang, J.C. Peng, J.L. Zhang, B.X. Zhou, Corros. Sci. 99, 172 (2015)CrossRefGoogle Scholar
  43. [43]
    A. Couet, A.T. Motta, A. Ambard, Corros. Sci. 100, 73 (2015)CrossRefGoogle Scholar
  44. [44]
    M. Yao, Y. Zhang, S. Li, X. Zhang, J. Zhou, B. Zhou, Acta Metall. Sin. 47, 872 (2011)Google Scholar
  45. [45]
    E. Hillner, D.G. Franklin, J.D. Smee, J. Nucl. Mater. 278, 334 (2000)CrossRefGoogle Scholar
  46. [46]
    T. Thorvaldsson, T. Andersson, A. Wilson, A. Wardle, in Zirconium in the Nuclear Industry: 8th International Symposium, ed. by C.M. Eucken, L.F.P.V. Swam (ASTM International, 1989)Google Scholar
  47. [47]
    M. Guerain, C. Duriez, J.L. Grosseau-Poussard, M. Mermoux, Corros. Sci. 95, 11 (2015)CrossRefGoogle Scholar
  48. [48]
    A. Yilmazbayhan, A.T. Motta, R.J. Comstock, G.P. Sabol, B. Lai, Z. Cai, J. Nucl. Mater. 324, 6 (2004)CrossRefGoogle Scholar
  49. [49]
    F. Garzarolli, E. Steinberg, H.G. Weidinger, in Zirconium in the Nuclear Industry: 8th International Symposium, ed. by C.M. Eucken, L.F.P.V. Swam (ASTM International, West Conshohocken, 1989)Google Scholar
  50. [50]
    T. Isobe, Y. Matsuo, Y. Mae, in Zirconium in the Nuclear Industry: 10th International Symposium, ed. by A.M. Garde, E.R. Bradley (ASTM International, West Conshohocken, 1991)Google Scholar
  51. [51]
    P. Tejland, H.O. Andrén, G. Sundell, M. Thuvander, B. Josefsson, L. Hallstadius, M. Ivermark, M. Dahlbäck, in Zirconium in the Nuclear Industry: 17TH International Symposium, ed. by R. Comstock, P. Barberis (ASTM International, 2015), p. 373Google Scholar
  52. [52]
    N. Ni, S. Lozano-Perez, J.M. Sykes, G.D.W. Smith, C.R.M. Grovenor, Corros. Sci. 53, 4073 (2011)CrossRefGoogle Scholar
  53. [53]
    J.H. Baek, H.J. Yong, I.S. Kim, J. Nucl. Mater. 280, 235 (2000)CrossRefGoogle Scholar
  54. [54]
    H.G. Kim, J.Y. Park, Y.H. Jeong, J. Nucl. Mater. 345, 1 (2005)CrossRefGoogle Scholar
  55. [55]
    J.H. Baek, H.J. Yong, J. Nucl. Mater. 304, 107 (2002)CrossRefGoogle Scholar
  56. [56]
    J. Huang, M.Y. Yao, C.Y. Gao, P.F. Hu, X. Liang, J.L. Zhang, B.X. Zhou, Q. Li, E. Ahsan, Corros. Sci. 104, 269 (2016)CrossRefGoogle Scholar
  57. [57]
    E. Polatidis, P. Frankel, J. Wei, M. Klaus, R.J. Comstock, A. Ambard, S. Lyon, R.A. Cottis, M. Preuss, J. Nucl. Mater. 432, 102 (2013)CrossRefGoogle Scholar
  58. [58]
    P. Platt, S. Wedge, P. Frankel, M. Gass, R. Howells, M. Preuss, J. Nucl. Mater. 459, 166 (2015)CrossRefGoogle Scholar
  59. [59]
    N. Ni, S. Lozano-Perez, M.L. Jenkins, C. English, G.D.W. Smith, J.M. Sykes, C.R.M. Grovenor, Scr. Mater. 62, 564 (2010)CrossRefGoogle Scholar
  60. [60]
    M. Parise, O. Sicardy, G. Cailletaud, J. Nucl. Mater. 256, 35 (1998)CrossRefGoogle Scholar
  61. [61]
    N. Vermaak, G. Parry, R. Estevez, Y. Bréchet, Acta Mater. 61, 4374 (2013)CrossRefGoogle Scholar
  62. [62]
    P. Platt, P. Frankel, M. Gass, M. Preuss, J. Nucl. Mater. 464, 313 (2015)CrossRefGoogle Scholar
  63. [63]
    B.X. Zhou, J.C. Peng, M.Y. Yao, Q. Li, S. Xia, C.X. Du, G. Xu, in Zirconium in the Nuclear Industry: 16th International Symposium, ed. by M. Limbäck, P. Barbéris (ASTM International, 2012)Google Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jing-Jing Liao
    • 1
    • 3
  • Zhong-Bo Yang
    • 1
  • Shao-Yu Qiu
    • 1
  • Qian Peng
    • 1
  • Zheng-Cao Li
    • 2
  • Ming-Sheng Zhou
    • 3
  • Hong Liu
    • 1
  1. 1.Science and Technology on Reactor Fuel and Materials LaboratoryNuclear Power Institute of ChinaChengduChina
  2. 2.Key Laboratory of Advanced Materials (MOE), School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  3. 3.Department of Engineering PhysicsTsinghua UniversityBeijingChina

Personalised recommendations