Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 1, pp 98–106 | Cite as

Enhancements of Passive Film and Pitting Resistance in Chloride Solution for 316LX Austenitic Stainless Steel After Sn Alloying

  • Yuan-Yuan Yang
  • Yuan-Yuan Liu
  • Man-Lang Cheng
  • Nian-Wei Dai
  • Min Sun
  • Jin Li
  • Yi-Ming JiangEmail author
Article
  • 34 Downloads

Abstract

In the present work, the electrochemical behavior and properties of the passive film of a new Sn-alloyed 316LX austenitic stainless steel were investigated. With the increase in Sn content in 316LX austenitic stainless steel from 0 to 0.21%, the critical pitting temperature value increased from 32.6 to 38.8 °C, and the pitting potential increased from 0.252 VSCE to 0.317 VSCE. Electrochemical impedance spectroscopy results showed that the corrosion resistance of passive film rose with the increase in Sn content, indicating a more stable passive film. The Mott–Schottky measurement revealed an n-type passive film with a decreased carrier concentration on the 316LX austenitic stainless steel surface. The Cr, Sn2+ and Sn4+ (SnO, SnOHCl or SnO2) enrichments were observed in the passive layer by X-ray photoelectron spectroscopy. The enrichment of Sn and Cr in the passive film can account for the enhanced pitting resistance of 316LX austenitic stainless steel in chloride solution.

Keywords

Austenitic stainless steel Sn alloying Pitting Chloride solution 

Notes

Acknowledgements

This work is supported financially by the National Key Research and Development Program of China (No. 2018 YFB 07004400) and the National Natural Science Foundation of China (Nos. 51671059, 51501041 and 51871061).

References

  1. [1]
    J. Degerbeck, Mater. Corros. 29, 179 (2015)CrossRefGoogle Scholar
  2. [2]
    L.L. Machuca, L. Murray, R. Gubner, S.I. Bailey, Mater. Corros. 65, 8 (2014)CrossRefGoogle Scholar
  3. [3]
    A.Q. Lü, Y. Zhang, Y. Li, G. Liu, Q.H. Zang, C.M. Liu, Acta Metall. Sin. (Eng. Lett.) 19, 183 (2006)Google Scholar
  4. [4]
    W. Wu, Y. Guo, H. Yu, Y. Jiang, J. Li, Int. J. Electrochem. Sci. 10, 14 (2015)Google Scholar
  5. [5]
    K. Hashimoto, K. Asami, A. Kawashima, H. Habazaki, E. Akiyama, Corros. Sci. 49, 42 (2007)CrossRefGoogle Scholar
  6. [6]
    S. Ningshen, M. Sakairi, K. Suzuki, S. Ukai, Corros. Sci. 78, 322 (2014)CrossRefGoogle Scholar
  7. [7]
    J. Horvath, H.H. Uhlig, J. Electrochem. Soc. 115, 791 (1968)CrossRefGoogle Scholar
  8. [8]
    H. Ogawa, H. Omata, I. Itoh, H. Okada, Corrosion 34, 52 (1978)CrossRefGoogle Scholar
  9. [9]
    U.K. Mudali, P. Shankar, S. Ningshen, R.K. Dayal, H.S. Khatak, B. Raj, Corros. Sci. 44, 2183 (2002)CrossRefGoogle Scholar
  10. [10]
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci. 50, 1796 (2008)CrossRefGoogle Scholar
  11. [11]
    X. Yang, C. Zhang, N. Fan, Z. Yang, Acta Metall. Sin. (Eng. Lett.) 27, 539 (2014)Google Scholar
  12. [12]
    J.P. Han, Y. Li, Z.H. Jiang, Y.C. Yang, X.X. Wang, L. Wang, K.T. Li, Adv. Mater. Res. 773, 406 (2013)CrossRefGoogle Scholar
  13. [13]
    N. Imai, N. Komatsubara, K. Kunishige, Trans. Iron Steel Inst. Jpn. 37, 224 (2007)CrossRefGoogle Scholar
  14. [14]
    H. Matsuoka, K. Osawa, M. Ono, M. Ohmura, ISIJ Int. 37, 255 (1997)CrossRefGoogle Scholar
  15. [15]
    J. Calvo, C.J. Maria, A. Rezaeian, S. Yue, ISIJ Int. 47, 1518 (2007)CrossRefGoogle Scholar
  16. [16]
    M. Hatano, H. Mastuyama, E. Ishimaru, A. Takahashi, Bull. Jpn. Inst. Met. 51, 25 (2012)Google Scholar
  17. [17]
    N.D. Nam, M.J. Kim, Y.W. Jang, J.G. Kim, Corros. Sci. 52, 14 (2010)CrossRefGoogle Scholar
  18. [18]
    H. Li, H. Yu, T. Zhou, B. Yin, S. Yin, Y. Zhang, Mater. Des. 84, 1 (2015)CrossRefGoogle Scholar
  19. [19]
    H. Luo, C. Dong, K. Xiao, X. Li, RSC Adv. 6, 9940 (2016)CrossRefGoogle Scholar
  20. [20]
    H. Luo, H. Su, B. Li, G. Ying, Appl. Surf. Sci. 439, 232 (2018)CrossRefGoogle Scholar
  21. [21]
    X. Zhang, F. Gao, Z. Liu, Steel Res. Int. 88, 2 (2017)Google Scholar
  22. [22]
    A. Pardo, M.C. Merino, M. Carboneras, F. Viejo, R. Arrabal, J. Muñoz, Corros. Sci. 48, 1075 (2006)CrossRefGoogle Scholar
  23. [23]
    D. Itzhak, S. Harush, Corros. Sci. 25, 883 (1985)CrossRefGoogle Scholar
  24. [24]
    M. Sun, M. Luo, C. Lu, T.W. Liu, Y.P. Wu, L.Z. Jiang, J. Li, Acta Metall. Sin. (Engl. Lett.) 28, 1089 (2015)Google Scholar
  25. [25]
    D.A. Shirley, Phys. Rev. B 5, 4709 (1972)CrossRefGoogle Scholar
  26. [26]
    L.Q. Guo, M.C. Lin, L.J. Qiao, A.A. Volinsky, Corros. Sci. 78, 55 (2014)CrossRefGoogle Scholar
  27. [27]
    J. Liu, X. Du, Y. Yang, Y. Deng, W. Hu, C. Zhong, Electrochem. Commun. 58, 6 (2015)CrossRefGoogle Scholar
  28. [28]
    J. Liu, C. Zhong, X. Du, Y. Wu, P. Xu, J. Liu, W. Hu, Electrochim. Acta 100, 164 (2013)CrossRefGoogle Scholar
  29. [29]
    J. Liu, T. Zhang, G. Meng, Y. Shao, F. Wang, Corros. Sci. 91, 232 (2015)CrossRefGoogle Scholar
  30. [30]
    J. Liu, T. Zhang, H. Li, Y. Zhao, F. Wang, X. Zhang, L. Cheng, K. Wu, J. Electrochem. Soc. 165, C328 (2018)CrossRefGoogle Scholar
  31. [31]
    B. Heine, R. Kirchheim, Corros. Sci. 31, 533 (1990)CrossRefGoogle Scholar
  32. [32]
    G.T. Burstein, P.C. Pistorius, S.P. Mattin, Corros. Sci. 35, 57 (1993)CrossRefGoogle Scholar
  33. [33]
    D.E. Williams, J. Stewart, P.H. Balkwill, Corros. Sci. 36, 1213 (1994)CrossRefGoogle Scholar
  34. [34]
    P.C. Pistorius, G.T. Burstein, Philos. Trans. Royal Soc. London A 341, 531 (1992)Google Scholar
  35. [35]
    A. Pardo, M.C. Merino, M. Carboneras, A.E. Coy, R. Arrabal, Corros. Sci. 49, 510 (2007)CrossRefGoogle Scholar
  36. [36]
    V. Raman, S. Nagarajan, N. Rajendran, Electrochem. Commun. 8, 1309 (2006)CrossRefGoogle Scholar
  37. [37]
    A.M. Fekry, R.M. El-Sherif, Electrochim. Acta 54, 7280 (2009)CrossRefGoogle Scholar
  38. [38]
    Y. Kayali, B. Anaturk, Mater. Des. 46, 776 (2013)CrossRefGoogle Scholar
  39. [39]
    L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, Electrochim. Acta 55, 6174 (2010)CrossRefGoogle Scholar
  40. [40]
    U. Stimming, J.W. Schultze, Electrochim. Acta 24, 859 (1979)CrossRefGoogle Scholar
  41. [41]
    A. Fattah-Alhosseini, M.A. Golozar, A. Saatchi, K. Raeissi, Corros. Sci. 52, 205 (2010)CrossRefGoogle Scholar
  42. [42]
    N.B. Hakiki, S. Boudin, B. Rondot, M.D.C. Belo, Corros. Sci. 37, 1809 (1995)CrossRefGoogle Scholar
  43. [43]
    L. Hamadou, A. Kadri, N. Benbrahim, Corros. Sci. 52, 859 (2010)CrossRefGoogle Scholar
  44. [44]
    C. Liu, Q. Bi, A. Leyland, A. Matthews, Corros. Sci. 45, 1257 (2003)CrossRefGoogle Scholar
  45. [45]
    Y. Lin, R. Du, R. Hu, C. Lin, Acta Phys. 21, 740 (2005)Google Scholar
  46. [46]
    A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci. 50, 780 (2008)CrossRefGoogle Scholar
  47. [47]
    H. Luo, H. Su, C. Dong, X. Li, Appl. Surf. Sci. 400, 38 (2016)CrossRefGoogle Scholar
  48. [48]
    G.S. Frankel, J. Electrochem. Soc. 145, 2186 (1998)CrossRefGoogle Scholar
  49. [49]
    R. Xu, C. Xu, H. Xue, Mater. Prot. 9, 7 (1998)Google Scholar
  50. [50]
    C.I. House, G.H. Kelsall, Electrochim. Acta 29, 1459 (1984)CrossRefGoogle Scholar
  51. [51]
    X. Zhang, Q. Zhao, J. Guo, Q. Xing, L. Deng, X. Hou, C. Fang, Acta Metall. Sin. (Engl. Lett.) 26, 345 (2013)CrossRefGoogle Scholar
  52. [52]
    D. Kong, C. Dong, X. Ni, C. Man, K. Xiao, X. Li, Appl. Surf. Sci. (2018),  https://doi.org/10.1016/j.apsusc.2018.06.029

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yuan-Yuan Yang
    • 1
  • Yuan-Yuan Liu
    • 1
  • Man-Lang Cheng
    • 1
  • Nian-Wei Dai
    • 1
  • Min Sun
    • 1
  • Jin Li
    • 1
  • Yi-Ming Jiang
    • 1
    Email author
  1. 1.Department of Materials ScienceFudan UniversityShanghaiChina

Personalised recommendations