Effect of Acidified Aerosols on Initial Corrosion Behavior of Q235 Carbon Steel

  • Miao-Ran Liu
  • Xiao Lu
  • Qi Yin
  • Chen Pan
  • Chuan WangEmail author
  • Zhen-Yao WangEmail author


The effect of simulated acidified marine aerosols on the corrosion morphology of carbon steel was studied using an in situ optical stereomicroscope and scanning electron microscope equipped with an energy-dispersive spectrometer and a white-light interferometer. The morphologies of the carbon steel were identified under marine aerosols with different droplet diameters, pH, and acidifications. The results showed that corrosion was initiated in tens of seconds under aerosol droplets acidified by HCl or H2SO4. Despite the differences in the acidifier and diameter, corrosion for acidified droplets with pH > 2 was general corrosion. For acidified droplets with pH < 1, the corrosion morphology depended on the acidifier species, the ring-like morphology for HCl and ridge-like morphology for H2SO4. The segregation of Cl was believed to be the main factor for the formation of the corrosion morphology under acidified droplets with pH < 1. Also, the concentration of SO42− in the droplets had some effect on the segregation of Cl ions when pH < 1.


Atmospheric corrosion Aerosol Acidification Carbon steel pH Corrosion morphology 



This work was supported financially by the National Natural Science Foundation of China (Nos. 51671197 and 51601199) and the Guangzhou Industry-University-Research Collaborative Innovation Alliance Special Project (No. 201604046014).


  1. [1]
    C. Lin, Q. Zhao, Y.E. Liu, J.N. Liang, Acta Metall. Sin. 46, 358 (2010). (in Chinese) CrossRefGoogle Scholar
  2. [2]
    S. Oesch, Corros. Sci. 38, 1357 (1996)CrossRefGoogle Scholar
  3. [3]
    J.E. SvenssonL, G. Johansson, Corros. Sci. 34, 721 (1993)CrossRefGoogle Scholar
  4. [4]
    T.E. Graedel, R.P. Frankenthal, J. Electrochem. Soc. 137, 2385 (1990)CrossRefGoogle Scholar
  5. [5]
    T. Tsuru, A. Nishikata, J. Wang, Mater. Sci. Eng. A 198, 161 (1995)CrossRefGoogle Scholar
  6. [6]
    R. Lindstrom, J.E. Svensson, L.G. Johansson, J. Electrochem. Soc. 147, 1751 (2000)CrossRefGoogle Scholar
  7. [7]
    J.E. Svensson, L.G. Johansson, Corros. Sci. 38, 2225 (1996)CrossRefGoogle Scholar
  8. [8]
    I.S. Cole, N.S. Azmat, A. Kanta, M. Venkatraman, Int. Mater. Rev. 54, 117 (2009)CrossRefGoogle Scholar
  9. [9]
    I.S. Cole, W.D. Ganther, D. Lau, Corros. Eng. Sci. Technol. 41, 310 (2006)CrossRefGoogle Scholar
  10. [10]
    I.S. Cole, W.D. Ganther, D.A. Paterson, G.A. King, S.A. Furman, D. Lau, Corros. Eng. Sci. Technol. 38, 259 (2003)CrossRefGoogle Scholar
  11. [11]
    G. Hoelzl, G. Luckeneder, H. Duchaczek, C. Kleber, A.W. Hassel, Corros. Sci. 127, 222 (2017)CrossRefGoogle Scholar
  12. [12]
    N.S. Azmat, K.D. Ralston, B.C. Muddle, I.S. Cole, Corros. Sci. 53, 3534 (2011)CrossRefGoogle Scholar
  13. [13]
    N.S. Azmat, K.D. Ralston, B.C. Muddle, I.S. Cole, Corros. Sci. 53, 1604 (2011)CrossRefGoogle Scholar
  14. [14]
    A.K. Neufeld, I.S. Cole, A.M. Bond, S.A. Furman, Corros. Sci. 44, 555 (2002)CrossRefGoogle Scholar
  15. [15]
    Z.Y. Chen, D. Persson, C. Leygraf, Corros. Sci. 50, 111 (2008)CrossRefGoogle Scholar
  16. [16]
    E. Schindelholz, B.E. Risteen, R.G. Kelly, J. Electrochem. Soc. 161, C460 (2014)CrossRefGoogle Scholar
  17. [17]
    L. Shengxi, L.H. Hihara, J. Electrochem. Soc. 159, C461 (2012)CrossRefGoogle Scholar
  18. [18]
    Z.Y. Chen, D. Persson, F. Samie, S. Zakipour, C. Leygraf, J. Electrochem. Soc. 152, B502 (2005)CrossRefGoogle Scholar
  19. [19]
    J. Alcantara, D.D.L. Fuente, B. Chico, J. Simancas, I. Diaz, M. Morcillo, Materials 10, 64 (2017)CrossRefGoogle Scholar
  20. [20]
    N.T. Lau, C.K. Chan, L.I. Chan, M. Fang, Corros. Sci. 50, 2927 (2008)CrossRefGoogle Scholar
  21. [21]
    I.S. Cole, D. Lau, D.A. Paterson, Corros. Eng. Sci. Technol. 39, 209 (2004)CrossRefGoogle Scholar
  22. [22]
    S.X. Li, L.H. Hihara, Corros. Eng., Sci. Technol. 45, 49 (2010)CrossRefGoogle Scholar
  23. [23]
    B.E. Risteen, E. Schindelholz, R.G. Kelly, J. Electrochem. Soc. 161, C580 (2011)CrossRefGoogle Scholar
  24. [24]
    S. Li, L.H. Hihara, J. Electrochem. Soc. 161, C268 (2014)CrossRefGoogle Scholar
  25. [25]
    B.E. Risteen, E. Schindelholz, R.G. Kelly, ECS Trans. 58, 1 (2014)CrossRefGoogle Scholar
  26. [26]
    S. Li, L.H. Hihara, Corros. Sci. 108, 200 (2016)CrossRefGoogle Scholar
  27. [27]
    C. Chen, F. Mansfeld, Corros. Sci. 39, 409 (1997)CrossRefGoogle Scholar
  28. [28]
    C. Chen, C.B. Breslin, F. Mansfeld, Mater. Corros. 49, 569 (1998)CrossRefGoogle Scholar
  29. [29]
    J. Weissenrieder, C. Leygraf, J. Electrochem. Soc. 151, B165 (2004)CrossRefGoogle Scholar
  30. [30]
    W. Han, G.C. Yu, Z.Y. Wang, J. Wang, Corros. Sci. 49, 2920 (2007)CrossRefGoogle Scholar
  31. [31]
    S.R. Street, A. Cook, H.B. Mohammed-Ali, T. Rayment, A.J. Davenport, Corrosion 74, 520 (2018)CrossRefGoogle Scholar
  32. [32]
    I.S. Cole, D.A. Paterson, W.D. Ganther, Corros. Eng. Sci. Technol. 38, 129 (2003)CrossRefGoogle Scholar
  33. [33]
    I.S. Cole, Materials 10, 12 (2017)CrossRefGoogle Scholar
  34. [34]
    J. Weissenrieder, C. Kleber, M. Schreiner, C. Leygraf, J. Electrochem. Soc. 151, B497 (2004)CrossRefGoogle Scholar
  35. [35]
    B. Maier, G.S. Frankel, J. Electrochem. Soc. 157, C302 (2010)CrossRefGoogle Scholar
  36. [36]
    S.I. Pyun, K.H. Na, J.J. Park, J. Solid State Electrochem. 5, 473 (2001)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Environment Corrosion Center, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations