Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 2, pp 235–244 | Cite as

Microstructure and Mechanical Properties of AZ31 Mg Alloy Fabricated by Pre-compression and Frustum Shearing Extrusion

  • Kun Sheng
  • Li-Wei LuEmail author
  • Yao Xiang
  • Min Ma
  • Zhong-Chang WangEmail author
Article
  • 39 Downloads

Abstract

The AZ31 Mg alloys were processed by 6% pre-compression and frustum shearing extrusion at various temperatures, and the microstructure, texture and mechanical properties of the resulting alloys are systematically investigated. The results show that the grain size monotonically increases from 6.4 to 12.6 μm and the texture intensity increases from 6.7 to 9.6 with the increase in the extrusion temperature. The combining effect of the pre-twinning and the frustum shearing deformation is found to contribute to the development of the weak basal texture in Mg alloys. The Mg alloy sheet produced at the extrusion temperature of 563 K exhibits excellent mechanical properties. The yield strength, ultimate tensile strength and elongation for the extruded alloys are 189.6 MPa, 288.4 MPa and 24.9%, respectively. Such improved mechanical properties are comparable or even superior to those of the alloys subjected to other deformation techniques, rendering the pre-compression and frustum shearing extrusion a promising way for further tailoring properties of Mg alloys.

Keywords

AZ31 magnesium alloy Frustum shearing extrusion Microstructure Mechanical property Dynamic recrystallization 

Notes

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant Nos. 51505143 and 51704112), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 17B089) and the financial supports from the China Postdoctoral Science Foundation (Grant No. 2016T90759).

References

  1. [1]
    F. Li, Y. Liu, X. Li, Acta Metall. Sin. (Engl. Lett.) 30, 1 (2017)CrossRefGoogle Scholar
  2. [2]
    R. Sun, Z.C. Wang, M. Saito, N. Shibata, Y. Ikuhara, Nat. Commun. 6, 7120-1 (2015)Google Scholar
  3. [3]
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34, 245 (2018)CrossRefGoogle Scholar
  4. [4]
    R.Z. Wu, Y.D. Yan, G.X. Wang, L.E. Murr, W. Han, Z.W. Zhang, M.L. Zhang, Int. Mater. Rev. 60, 65 (2015)CrossRefGoogle Scholar
  5. [5]
    Y.Z. Du, M.Y. Zheng, X.G. Qiao, K. Wu, X.D. Liu, G.J. Wang, X.Y. Lv, M.J. Li, X.L. Liu, Z.J. Wang, Y.T. Liu, Mater. Sci. Eng. A 583, 69 (2013)CrossRefGoogle Scholar
  6. [6]
    Y.Y. Guang, S.S. Yang, J.D. Wen, Scr. Mater. 43, 1009 (2016)CrossRefGoogle Scholar
  7. [7]
    S.H. Kang, Y.S. Lee, J.H. Lee, J. Mater. Process. Technol. 201, 436 (2008)CrossRefGoogle Scholar
  8. [8]
    Y. Wang, H. Choo, Acta Mater. 81, 83 (2014)CrossRefGoogle Scholar
  9. [9]
    Y.C. Xin, H. Zhou, H.H. Yu, R. Hong, H. Zhang, Q. Liu, Mater. Sci. Eng. A 622, 178 (2015)CrossRefGoogle Scholar
  10. [10]
    E. Mostaed, A. Fabrizi, D. Dellasega, F. Bonollo, M. Vedani, J. Alloys Compd. 638, 267 (2015)CrossRefGoogle Scholar
  11. [11]
    Z. Yu, C. Xu, J. Meng, X. Zang, S. Kamado, Mater. Sci. Eng. A 713, 234 (2018)CrossRefGoogle Scholar
  12. [12]
    J.S. Zhang, W.B. Zhang, L.P. Bian, W.L. Cheng, X.F. Niu, C.X. Xu, S.J. Wu, Mater. Sci. Eng. A 585, 268 (2013)CrossRefGoogle Scholar
  13. [13]
    F.M. Lu, A.B. Ma, J.H. Jiang, D.H. Yang, D. Song, Y.H. Yuan, J. Chen, Mater. Sci. Eng. A 594, 330 (2014)CrossRefGoogle Scholar
  14. [14]
    T.T. Zhang, W.X. Wang, J. Zhou, X.Q. Cao, R.S. Xie, Y. Wei, Acta Metall. Sin. (Engl. Lett.) 10, 1 (2017)Google Scholar
  15. [15]
    Q.H. Wang, J.F. Song, B. Jiang, A.T. Tang, Y.F. Chai, T.H. Yang, G.S. Huang, F.S. Huang, Mater. Sci. Eng. A 720, 85 (2018)CrossRefGoogle Scholar
  16. [16]
    J. Xu, J.F. Song, B. Jiang, J.J. He, Q.H. Wang, B. Liu, G.S. Huang, F.S. Pan, Mater. Sci. Eng. A 706, 172 (2017)CrossRefGoogle Scholar
  17. [17]
    J. Xu, T.H. Yang, B. Jiang, J.F. Song, J.J. He, Q.H. Wang, Y.F. Chai, G.S. Huang, F.S. Pan, J. Alloys Compd. 762, 719 (2018)CrossRefGoogle Scholar
  18. [18]
    C. Wang, H. Ding, B.S. Wang, K. Wang, J.J. Shi, J.F. Chen, Acta Metall. Sin. (Engl. Lett.) 30, 921 (2017)CrossRefGoogle Scholar
  19. [19]
    M.J. Hou, H. Zhang, J.F. Fan, Q. Zhang, L.F. Wang, H.B. Dong, B.S. Xu, J. Alloys Compd. 15, 514 (2018)CrossRefGoogle Scholar
  20. [20]
    L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet, Mater. Sci. Eng. A 445, 302 (2007)CrossRefGoogle Scholar
  21. [21]
    S.G. Hong, S.H. Park, S.L. Chong, Acta Mater. 18, 5873 (2010)CrossRefGoogle Scholar
  22. [22]
    A. Galiyev, R. Kaibyshev, G. Gottstein, Acta Mater. 7, 1199 (2001)CrossRefGoogle Scholar
  23. [23]
    F. Chai, D. Zhang, Y. Li, W. Zhang, J. Mater. Sci. 8, 3212 (2015)CrossRefGoogle Scholar
  24. [24]
    M.P. Liu, H.J. Roven, M.Y. Murashkin, R.Z. Valiev, A. Kilmametov, Z. Zhang, Y.D. Yu, J. Mater. Sci. 13, 4681 (2013)CrossRefGoogle Scholar
  25. [25]
    Q.S. Yang, B. Jiang, Z.J. Yu, Q.W. Dai, S.Q. Luo, Acta Metall. Sin. (Engl. Lett.) 28, 1257 (2015)CrossRefGoogle Scholar
  26. [26]
    A.B. Spierings, K. Dawson, T. Heeling, P.J. Uggowitzer, R. Schaublin, F. Palm, K. Wegener, Mater. Des. 115, 52 (2017)CrossRefGoogle Scholar
  27. [27]
    X. Huang, Y. Chino, M. Yuasa, H. Ueda, M. Inoue, F. Kido, T. Mastumoto, Mater. Sci. Eng. A 679, 162 (2017)CrossRefGoogle Scholar
  28. [28]
    Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, S.W. Xu, Mater. Sci. Eng. A 620, 164 (2015)CrossRefGoogle Scholar
  29. [29]
    A. Kula, C.J. Silva, M. Niewczas, J. Alloys Compd. 727, 642 (2017)CrossRefGoogle Scholar
  30. [30]
    H.Y. Wu, M.D. Tzou, C.C. Huang, H.H. Tsai, Int. J. Adv. Manuf. Technol. 80, 1241 (2015)CrossRefGoogle Scholar
  31. [31]
    B. Kim, S.M. Baek, J.G. Lee, S.S. Park, J. Alloys Compd. 706, 56 (2017)CrossRefGoogle Scholar
  32. [32]
    H.Y. Chao, Y. Yang, X. Wang, E.D. Wang, Mater. Sci. Eng. A 528, 3428 (2011)CrossRefGoogle Scholar
  33. [33]
    C.W. Su, L. Lu, M.O. Lai, Mater. Sci. Eng. A 434, 227 (2006)CrossRefGoogle Scholar
  34. [34]
    H.K. Kim, W.J. Kim, Mater. Sci. Eng. A 385, 300 (2004)CrossRefGoogle Scholar
  35. [35]
    L.B. Tong, M.Y. Zheng, L.R. Cheng, S. Kamado, H.J. Zhang, Mater. Sci. Eng. A 569, 48 (2013)CrossRefGoogle Scholar
  36. [36]
    Y. Yang, X.D. Peng, H.M. Wen, G.B. Wei, W.D. Xie, E.J. Lavernia, Mater Sci. Eng. A 611(1), 8 (2014)Google Scholar
  37. [37]
    S.H. Park, S.H. Kim, H.S. Kim, J. Yoon, B.S. You, J. Alloys Compd. 667, 170 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut MaterialHunan University of Science and TechnologyXiangtanChina
  2. 2.College of Materials Science and EngineeringHunan University of Science and TechnologyXiangtanChina
  3. 3.Department of Quantum Materials Science and TechnologyInternational Iberian Nanotechnology Laboratory (INL)BragaPortugal

Personalised recommendations