Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 2, pp 187–193 | Cite as

Solute Clusters/Enrichment at the Early Stage of Ageing in Mg–Zn–Gd Alloys Studied by Atom Probe Tomography

  • Xin-Fu GuEmail author
  • Tadashi Furuhara
  • Leng Chen
  • Ping Yang


Three-dimensional distribution of solute elements in an Mg–Zn–Gd alloy during ageing process is quantitatively characterized by three-dimensional atom probe (3DAP) tomography. Based on the radius distribution function, it is found that Zn–Gd solute pairs in Mg matrix appear mainly at two peaks at early stage of ageing, and the separation distance between Zn and Gd atoms could be well rationalized by the first-principle calculation. Moreover, the fraction of Zn–Gd solute pairs increases first and then decreases due to the precipitation of long-period stacking ordered (LPSO) structures. Both the composition of the structural unit in LPSO structure and the solute enrichment around it are quantified. It is found that Zn and Gd elements are synchronized in the LPSO structure, and solute segregation of pure Zn or Gd is not observed at the transformation front of the LPSO structure in this alloy. In addition, the crystallography of transformation front is further determined by 3DAP data.


Magnesium alloy Long-period stacking ordered (LPSO) Atomic cluster Three-dimensional atom probe (3DAP) Crystallography 



This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas, “Synchronized Long-Period Stacking Ordered Structure”, from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 23109006), and Fundamental Research Funds for the Central Universities (No. FRF-TP-17-003A1). In addition, the organization of this symposium by Prof. R.Z. Wu (Harbin Engineering University) is greatly appreciated.


  1. [1]
    I. Polmear, D. StJohn, J.-F. Nie, M. Qian (eds.), Light Alloys (Butterworth-Heinemann, Boston, 2017)Google Scholar
  2. [2]
    Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto, Mater. Trans. 42, 7 (2001)Google Scholar
  3. [3]
    Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Scripta Mater. 55, 5 (2006)CrossRefGoogle Scholar
  4. [4]
    K. Hagihara, N. Yokotani, Y. Umakoshi, Intermetallics 18, 2 (2010)Google Scholar
  5. [5]
    X. Shao, Z. Yang, X. Ma, Acta Mater. 58, 14 (2010)CrossRefGoogle Scholar
  6. [6]
    M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura, Scr. Mater. 53, 7 (2005)CrossRefGoogle Scholar
  7. [7]
    M. Yamasaki, K. Hashimoto, K. Hagihara, Y. Kawamura, Acta Mater. 59(9), 3646 (2011)CrossRefGoogle Scholar
  8. [8]
    X. Zeng, Y. Wu, L. Peng, D. Lin, W. Ding, Y. Peng, Acta Metall. Sin. 46, 9 (2010). (in Chinese) CrossRefGoogle Scholar
  9. [9]
    J.H. Zhang, L. Zhang, Z. Leng, S.J. Liu, R.Z. Wu, M.L. Zhang, Scr. Mater. 68, 9 (2013)Google Scholar
  10. [10]
    Y. Kawamura, M. Yamasaki, Mater. Trans. 48, 11 (2007)CrossRefGoogle Scholar
  11. [11]
    Q.Q. Jin, X.H. Shao, X.B. Hu, Z.Z. Peng, X.L. Ma, Philos. Mag. 97, 1 (2017)CrossRefGoogle Scholar
  12. [12]
    S.B. Mi, Q.Q. Jin, Scripta Mater. 68, 8 (2013)CrossRefGoogle Scholar
  13. [13]
    H. Yokobayashi, K. Kishida, H. Inui, M. Yamasaki, Y. Kawamura, Acta Mater. 59, 19 (2011)CrossRefGoogle Scholar
  14. [14]
    Z. Luo, S. Zhang, Y. Tang, D. Zhao, J. Alloys Compd. 209, 1 (1994)CrossRefGoogle Scholar
  15. [15]
    C. Liu, Y. Zhu, Q. Luo, B. Liu, Q. Gu, Q. Li, J. Mater. Sci. Technol. 34, 12 (2018)CrossRefGoogle Scholar
  16. [16]
    Y. Xu, D. Xu, X. Shao, E. Han, Acta Metall. Sin. (Engl. Lett.) 26, 3 (2013)Google Scholar
  17. [17]
    E. Abe, A. Ono, T. Itoi, M. Yamasaki, Y. Kawamura, Philos. Mag. Lett. 91, 10 (2011)CrossRefGoogle Scholar
  18. [18]
    M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, M. Nishida, Mater. Sci. Eng. A 393, 1 (2005)CrossRefGoogle Scholar
  19. [19]
    Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-Ishi, K. Hono, J.F. Nie, Scr. Mater. 60, 11 (2009)Google Scholar
  20. [20]
    D. Egusa, E. Abe, Acta Mater. 60, 1 (2013)Google Scholar
  21. [21]
    J.F. Nie, Y.M. Zhu, A.J. Morton, Metall. Mater. Trans. A 45, 8 (2014)CrossRefGoogle Scholar
  22. [22]
    K. Kishida, H. Yokobayashi, H. Inui, M. Yamasaki, Y. Kawamura, Intermetallics 31, 55–64 (2012)CrossRefGoogle Scholar
  23. [23]
    X.F. Gu, T. Furuhara, L. Chen, P. Yang (2018). arXiv:1805.07110
  24. [24]
    S. Kurokawa, A. Yamaguchi, A. Sakai, Mater. Trans. 54, 7 (2013)CrossRefGoogle Scholar
  25. [25]
    H. Kimizuka, S. Kurokawa, A. Yamaguchi, A. Sakai, S. Ogata, Sci. Rep. 4, 6841 (2014)Google Scholar
  26. [26]
    Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 60, 19 (2012)Google Scholar
  27. [27]
    X.F. Gu, T. Furuhara, L. Chen, P. Yang, Scr. Mater. 150, 45 (2018)CrossRefGoogle Scholar
  28. [28]
    H. Okuda, M. Yamasaki, Y. Kawamura, M. Tabuchi, H. Kimizuka, Sci. Rep. 5, 14186 (2015)CrossRefGoogle Scholar
  29. [29]
    H. Okuda, M. Yamasaki, Y. Kawamura, Scr. Mater. 139, 26 (2017)CrossRefGoogle Scholar
  30. [30]
    S. Iikubo, S. Hamamoto, H. Ohtani, Mater. Trans. 54, 5 (2013)CrossRefGoogle Scholar
  31. [31]
    K. Kishida, H. Yokobayashi, H. Inui, Philos. Mag. 93, 21 (2013)CrossRefGoogle Scholar
  32. [32]
    J.K. Kim, L. Jin, S. Sandlöbes, D. Raabe, Sci. Rep. 7, 1 (2017)CrossRefGoogle Scholar
  33. [33]
    S. Matsunaga, Initial Formation Stage of Long Period Stacking Ordered Phase in Mg-Based Ternary Alloys (Graduate School of Engineering, Tohoku University, Sendai, 2015)Google Scholar
  34. [34]
    D.H. Ping, K. Hono, J.F. Nie, Scr. Mater. 48, 8 (2003)CrossRefGoogle Scholar
  35. [35]
    D.H. Ping, K. Hono, Y. Kawamura, A. Inoue, Philos. Mag. Lett. 82, 10 (2002)CrossRefGoogle Scholar
  36. [36]
    J.F. Nie, K. Oh-ishi, X. Gao, K. Hono, Acta Mater. 56, 20 (2008)Google Scholar
  37. [37]
    N. Stanford, G. Sha, A. La Fontaine, M.R. Barnett, S.P. Ringer, Metall. Mater. Trans. A 40, 10 (2009)CrossRefGoogle Scholar
  38. [38]
    Q. Liu, Y. Chen, C. Li, J. Gu, Acta Metall. Sin. (Engl. Lett.) 31, 5 (2018)Google Scholar
  39. [39]
    M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura, Acta Mater. 55, 20 (2007)CrossRefGoogle Scholar
  40. [40]
    Y.J. Wu, D.L. Lin, X.Q. Zeng, L.M. Peng, W.J. Ding, J. Mater. Sci. 44, 6 (2009)Google Scholar
  41. [41]
    K. Saito, A. Yasuhara, K. Hiraga, J. Alloys Compd. 509, 5 (2011)CrossRefGoogle Scholar
  42. [42]
    X.F. Gu, T. Furuhara, T. Kiguchi, T.J. Konno, L. Chen, P. Yang, Scr. Mater. 146, 024504 (2018)CrossRefGoogle Scholar
  43. [43]
    F. De Geuser, W. Lefebvre, D. Blavette, Philos. Mag. Lett. 86, 64 (2006)CrossRefGoogle Scholar
  44. [44]
    H. Kimizuka, S. Ogata, Mater. Res. Lett. 1, 4 (2013)CrossRefGoogle Scholar
  45. [45]
    H. Kimizuka, M. Fronzi, S. Ogata, Scr. Mater. 69, 8 (2013)CrossRefGoogle Scholar
  46. [46]
    B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Mater. Today 15, 9 (2012)CrossRefGoogle Scholar
  47. [47]
    B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy (Springer, New York, 2012)CrossRefGoogle Scholar
  48. [48]
    K. Sato, S. Tashiro, S. Matsunaga, Y. Yamaguchi, T. Kiguchi, T.J. Konno, Philos. Mag. 98, 21 (2018)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xin-Fu Gu
    • 1
    • 2
    Email author
  • Tadashi Furuhara
    • 2
  • Leng Chen
    • 1
  • Ping Yang
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations