Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 550–558 | Cite as

Microalloying Effect of Sn on Phase Transformation During Heat Treatment in Mg–Y–Zn–Zr Alloys

  • Pei-Lin Zhang
  • Yu-Hong ZhaoEmail author
  • Ruo-Peng Lu
  • Zhi-Bing Ding
  • Hua Hou


The microstructure and mechanical properties of the as-cast and heat-treated Mg–4.6Y–2.5Zn–0.6Zr–xSn (x = 0, 0.2 and 0.5 wt%) alloys were investigated in this work. The results showed that the eutectics have been refined with 0.2% Sn addition and it has no effect on the phase category of the alloys. However, Sn3Y5 phase was found in 0.5% Sn-added alloy. After heat treatment at 520 °C, the transformation of the long-period stacking ordered (LPSO) phase takes place in the Mg–Y–Zn–Zr alloy, but the transition is not completed in the alloys containing Sn. In addition, during the heat treatment, the mechanical properties of Sn-free alloys are significantly improved, and the strength of alloys containing Sn does not change much. Through observation and analysis of the microstructure and mechanical properties, it is found that Sn addition hinders the process of α′-Mg → α-Mg + 14H and the process is the key to the transition of 18H-LPSO to 14H-LPSO.


Long-period stacking ordered (LPSO) phase Microstructure Heat treatment Phase transformation 



This work is supported financially by the National Natural Science Foundation of China (Nos. 51774254, 51774253, 51701187, U1610123, 51674226, 51574207, and 51574206), the Science and Technology Major Project of Shanxi Province (No. MC2016-06), and the Shanxi Province Science Foundation for Youths (No. 201601D021062).


  1. [1]
    S. Shao, Y. Lin, C.S. Xu, Y.X. Xu, B. Wu, X.S. Zeng, X.F. Lu, X.J. Yang, Acta Metall. Sin. (Engl. Lett.) 28, 7 (2015)CrossRefGoogle Scholar
  2. [2]
    J.E. Morgan, B.L. Mordike, Development of creep resistant magnesium rare earth alloys. Paper presented at proceedings of the 6th international conference, Melbourne, Australia, 16–20 Aug 1982Google Scholar
  3. [3]
    K. Yang, J.S. Zhang, X.M. Zong, W. Liu, C.X. Xu, Acta Metall. Sin. (Engl. Lett.) 30, 464 (2017)CrossRefGoogle Scholar
  4. [4]
    J.L. Li, N. Zhang, X.X. Wang, D. Wu, R.S. Chen, Acta Metall. Sin. (Engl. Lett.) 31, 189 (2018)CrossRefGoogle Scholar
  5. [5]
    E. Oñorbe, G. Garcés, P.P. Zubiaur, P. Adeva, Non-linear Triatomic Molecules, vol. 2 (Springer, Berlin, 2012), pp. 288–289Google Scholar
  6. [6]
    B.N. Du, Z.Y. Hu, L.Y. Sheng, D.K. Xu, Y.F. Zheng, T.F. Xi, Acta Metall. Sin. (Engl. Lett.) 31, 351 (2018)CrossRefGoogle Scholar
  7. [7]
    P. Cheng, Y.H. Zhao, R.P. Lu, Mater. Sci. Eng. A 708, 482 (2017)CrossRefGoogle Scholar
  8. [8]
    T.W. Fan, B.Y. Tang, L.M. Peng, Scr. Mater. 64, 942 (2011)CrossRefGoogle Scholar
  9. [9]
    I.J. Polmear, Br. J. Cancer 37, 12 (1996)Google Scholar
  10. [10]
    M. Matsuda, S. Ii, Y. Kawamura, Mater. Sci. Eng. A 393, 269 (2005)CrossRefGoogle Scholar
  11. [11]
    Y.M. Zhu, M. Weyland, A.J. Morton, K. Oh-ishi, J.F. Nie, Scr. Mater. 60, 980 (2009)CrossRefGoogle Scholar
  12. [12]
    A. Ono, E. Abe, T. Itoi, M. Hirohashi, M. Yomasaki, Y. Kawamura, Mater. Trans. 49, 990 (2008)CrossRefGoogle Scholar
  13. [13]
    J. Lee, K. Sato, T.J. Konno, K. Hiraga, Mater. Trans. 50, 222 (2005)CrossRefGoogle Scholar
  14. [14]
    Y.M. Zhu, A.J. Morton, J.F. Nie, Acta Mater. 58, 2936 (2010)CrossRefGoogle Scholar
  15. [15]
    T. Itoi, T. Seimiya, Y. Kawamura, M. Hirohashi, Scr. Mater. 51, 107 (2004)CrossRefGoogle Scholar
  16. [16]
    E. Abe, Y. Kawamura, K. Hayashi, A. Inoue, Acta Mater. 50, 3845 (2002)CrossRefGoogle Scholar
  17. [17]
    J.P. Hirth, J. Lothe, T. Mura, Theory of Dislocations, 2nd edn. (Wiley, Hoboken, 1983), pp. 476–477Google Scholar
  18. [18]
    J.S. Zhang, C.J. Chen, Z.P. Que, W.L. Cheng, J.D. Xu, J.J. Kang, Mater. Sci. Eng. A 552, 81 (2012)CrossRefGoogle Scholar
  19. [19]
    H. Liu, F. Xue, J. Bai, J. Zhou, X. Liu, Mater. Sci. Eng. A 585, 387 (2013)CrossRefGoogle Scholar
  20. [20]
    H.Y. Zhang, R. Xiao, B.S. Jin, D.K. Shen, R. Chen, G.M. Xiao, Bioresour. Technol. 137, 82 (2013)CrossRefGoogle Scholar
  21. [21]
    S. Huang, J.F. Wang, F. Hou, Y. Li, F.S. Pang, Mater. Lett. 137, 143 (2014)CrossRefGoogle Scholar
  22. [22]
    A. Gorny, M. Bamberger, A. Katsman, J. Mater. Sci. 42, 10014 (2007)CrossRefGoogle Scholar
  23. [23]
    H.D. Zhao, G.W. Qin, Y.P. Ren, W.L. Pei, Y. Guo, J. Alloys Compd. 481, 140 (2009)CrossRefGoogle Scholar
  24. [24]
    Y.B. Xu, D.K. Xu, X.H. Shao, E.H. Han, Acta Metall. Sin. (Engl. Lett.) 26, 217 (2013)CrossRefGoogle Scholar
  25. [25]
    H.D. Zhao, G.W. Qin, Y.P. Ren, W.L. Pei, D. Chen, Y. Guo, Trans. Nonferrous Met. Soc. China 20, 493 (2010)CrossRefGoogle Scholar
  26. [26]
    Y. Ali, D. Qiu, B. Jiang, F.S. Pang, M.X. Zhang, J. Alloys Compd. 619, 639 (2015)CrossRefGoogle Scholar
  27. [27]
    H. Qiu, H. Yan, Z. Hu, J. Alloys Compd. 567, 77 (2013)CrossRefGoogle Scholar
  28. [28]
    M.A. Easton, D.H. StJohn, Acta Mater. 49, 1867 (2001)CrossRefGoogle Scholar
  29. [29]
    Y.A. Chen, J. Li, Y. Song, L. Hao, R.Y. Ye, Mater. Sci. Eng. A 612, 96 (2014)CrossRefGoogle Scholar
  30. [30]
    M. Suzuki, T. Kimura, J. Koike, K. Maruyama, Scr. Mater. 48, 997 (2003)CrossRefGoogle Scholar
  31. [31]
    H. Liu, K. Yan, J.L. Yan, F. Xue, J.P. Sun, J.H. Jiang, A.B. Ma, Trans. Nonferrous Met. Soc. China 27, 63 (2017)CrossRefGoogle Scholar
  32. [32]
    J.K. Kim, W.S. Ko, S. Sandlöbes, M. Heidelmann, B. Grabowski, D. Raabe, Acta Mater. 112, 171 (2016)CrossRefGoogle Scholar
  33. [33]
    Z. Huang, X. Guo, Z. Zhang, C. Xu, Chin. J. Rare Met. 28, 683 (2004)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pei-Lin Zhang
    • 1
  • Yu-Hong Zhao
    • 1
    Email author
  • Ruo-Peng Lu
    • 1
  • Zhi-Bing Ding
    • 1
  • Hua Hou
    • 1
  1. 1.School of Materials Science and EngineeringNorth University of ChinaTaiyuanChina

Personalised recommendations