Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 607–617 | Cite as

Corrosion Behavior of High-Strength Steel for Flexible Riser Exposed to CO2-Saturated Saline Solution and CO2-Saturated Vapor Environments

  • Da-Zheng Zhang
  • Xiu-Hua GaoEmail author
  • Lin-Xiu Du
  • Hong-Xuan Wang
  • Zhen-Guang Liu
  • Ning-Ning Yang
  • R. D. K. Misra


The corrosion behavior of high-strength steel used for flexible riser exposed to CO2-saturated saline solution and CO2-saturated vapor environments was studied through immersion experiment and electrochemical corrosion experiment. The corrosion behavior and mechanism of the tested steel were analyzed on the basis of corrosion kinetics, nature of corrosion products, corrosion product morphology, elemental distribution and polarization curves. The experimental results showed that the microstructure of the tested steel was bainitic microstructure. The corrosive activity of the tested steel exposed to CO2-saturated vapor environment was significantly lower than that exposed to CO2-saturated saline solution environment. On prolonging the exposure time, the corrosion rate gradually decreased, the corrosion heterogeneity increased, and the dimensions of FeCO3 crystals gradually became small. At later stages of corrosion, the corrosion current density decreased significantly and the anodic Tafel slope increased, indicating that the corrosion process was strongly inhibited. The corrosion mechanism of low-alloy steel with bainitic microstructure was proposed based on experimental results.


Flexible riser High-strength bainitic steel CO2 corrosion Electrochemical behavior 



This work was carried out with financial support from the National High Technology Research and Development Program of China (Grant No. 2015AA03A501) and Doctoral Scientific Research Foundation of Jiangsu University of Science and Technology (1062931702).


  1. [1]
    B.R. Linter, G.T. Burstein, Corros. Sci. 117, 41 (1999)Google Scholar
  2. [2]
    J.D. Laumb, K.A. Glazewski, J.A. Hamling, A. Azenkeng, N. Kalenze, T.L. Watson, Energy Procedia 5173, 114 (2017)Google Scholar
  3. [3]
    X. Yang, S. Saevik, L. Sun, Ocean Eng. 594, 108 (2015)Google Scholar
  4. [4]
    I.S. Cole, P. Corrigan, S. Sim, N. Birbilis, Int. J. Greenh. Gas Control 749, 5 (2011)Google Scholar
  5. [5]
    Z.-L. Zhang, L.-Q. Wang, H.-Y. Ci, Ocean Eng. 386, 106 (2015)Google Scholar
  6. [6]
    S.M. O’Halloran, A.D. Connaire, A.M. Harte, S.B. Leen, Tribol. Int. 306, 100 (2016)Google Scholar
  7. [7]
    M.A. Vaz, N.A.S. Rizzo, Mar. Struct. 275, 24 (2011)Google Scholar
  8. [8]
    N.H. Østergaard, A. Lyckegaard, J.H. Andreasen, Mar. Struct. 64, 27 (2012)Google Scholar
  9. [9]
    Z. Liu, X. Gao, L. Du, J. Li, X. Zhou, X. Wang, Y. Wang, C. Liu, G. Xu, R.D.K. Misra, Appl. Surf. Sci. 974, 440 (2018)Google Scholar
  10. [10]
    Y. Bai, T. Liu, W. Ruan, W. Chen, Compos. Struct. 1, 170 (2017)Google Scholar
  11. [11]
    C. Taravel-Condat, N. Desamais, Qualification of high strength carbon steel wires for use in specific annulus environment of flexible pipes containing CO2 and H2S. Paper presented at the 25th international conference on offshore mechanics and Arctic engineering, Hamburg, Germany, 4–9 June 2006Google Scholar
  12. [12]
    D.A. Lopez, T. Perez, S.N. Simison, Mater. Des. 561, 24 (2003)Google Scholar
  13. [13]
    S. Sim, I.S. Cole, F. Bocher, P. Corrigan, R.P. Gamage, N. Ukwattage, N. Birbilis, Int. J. Greenh. Gas Control 534, 17 (2013)Google Scholar
  14. [14]
    R.M. Moreira, C.V. Franco, C.J.B.M. Joia, S. Giordana, O.R. Mattos, Corros. Sci. 2987, 46 (2004)Google Scholar
  15. [15]
    J.L. Li, H.X. Ma, S.D. Zhu, C.T. Qu, Z.F. Yin, Corros. Sci. 101, 86 (2014)Google Scholar
  16. [16]
    G.A. Zhang, Y.F. Cheng, Corros. Sci. 87, 51 (2009)Google Scholar
  17. [17]
    L. Xu, B. Wang, J. Zhu, W. Li, Z. Zheng, Appl. Surf. Sci. 39, 379 (2016)Google Scholar
  18. [18]
    Y. Zhou, J. Chen, Y. Xu, Z. Liu, J. Mater. Sci. Technol. 168, 29 (2013)Google Scholar
  19. [19]
    S. Guo, L. Xu, L. Zhang, W. Chang, M. Lu, Corros. Sci. 123, 110 (2016)Google Scholar
  20. [20]
    Z. Liu, X. Gao, J. Li, L. Du, C. Yu, P. Li, X. Bai, Electrochim. Acta 842, 213 (2016)Google Scholar
  21. [21]
    Q.Y. Liu, L.J. Mao, S.W. Zhou, Corros. Sci. 165, 84 (2014)Google Scholar
  22. [22]
    Z. Liu, X. Gao, L. Du, J. Li, Y. Kuang, B. Wu, Appl. Surf. Sci. 610, 351 (2015)Google Scholar
  23. [23]
    S. Sim, I.S. Cole, Y.-S. Choi, N. Birbilis, Int. J. Greenh. Gas Contol 185, 29 (2014)Google Scholar
  24. [24]
    L. Wei, X. Pang, C. Liu, K. Gao, Corros. Sci. 404, 100 (2015)Google Scholar
  25. [25]
    H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, D. de la Fuente, Corros. Sci. 438, 87 (2014)Google Scholar
  26. [26]
    Z.J. Cheng, D. Song, J.Y. Jiang, J.H. Jiang, X.L. Ma, K. You, A.B. Ma, J. Iron Steel Res. Int. 1281, 23 (2016)Google Scholar
  27. [27]
    G.A. Zhang, Y.F. Cheng, Corros. Sci. 1589, 51 (2009)Google Scholar
  28. [28]
    F.F. Eliyan, A. Alfantazi, Corros. Sci. 380, 85 (2014)Google Scholar
  29. [29]
    F.F. Eliyan, F. Mohammadi, A. Alfantazi, Corros. Sci. 37, 64 (2012)Google Scholar
  30. [30]
    A. Kahyarian, M. Singer, S. Nesic, J. Nat. Gas Sci. Eng. 530, 29 (2016)Google Scholar
  31. [31]
    M. Gao, X. Pang, K. Gao, Corros. Sci. 557, 53 (2011)Google Scholar
  32. [32]
    N. Zhang, D. Zeng, G. Xiao, J. Shang, Y. Liu, D. Long, Q. He, Ambrish Singh, J. Nat. Gas Sci. Eng. 444, 30 (2016)Google Scholar
  33. [33]
    J.L. Mora-Mendoza, S. Turgoose, Corros. Sci. 1223, 44 (2002)Google Scholar
  34. [34]
    L. Wei, K. Gao, Q. Li, Appl. Surf. Sci. 524, 440 (2018)Google Scholar
  35. [35]
    G.A. Zhang, D. Liu, Y.Z. Li, X.P. Guo, Corros. Sci. 107, 120 (2017)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Da-Zheng Zhang
    • 1
  • Xiu-Hua Gao
    • 1
    Email author
  • Lin-Xiu Du
    • 1
  • Hong-Xuan Wang
    • 2
  • Zhen-Guang Liu
    • 3
  • Ning-Ning Yang
    • 1
  • R. D. K. Misra
    • 4
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.Neptune Offshore Engineering Development Co., LtdTianjinChina
  3. 3.School of Material Science and EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  4. 4.Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations