Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 638–650 | Cite as

Creep Behavior and Life Assessment of a Novel Heat-Resistant Austenite Steel and Its Weldment

  • Yu Zhang
  • Hong-Yang Jing
  • Lian-Yong XuEmail author
  • Yong-Dian Han
  • Lei Zhao
  • Xi-Shan Xie
  • Qiu-Hua Zhu


In the present study, creep activation energy for rupture was obtained as 221–348 kJ/mol for 22Cr15Ni3.5CuNbN due to the precipitation-hardening mechanism. The extrapolation strength of creep rupture time of 105 h at 923 K for 22Cr15Ni3.5CuNbN is more valid (83.71 MPa) predicted by the Manson–Haferd method, which is superior to other commercial heat-resistant steels. The tensile creep tests ranging from 180 to 240 MPa at 923 K were conducted to investigate creep deformation behavior of welded joint between a novel heat-resistant austenite steel 22Cr15Ni3.5CuNbN and ERNiCrCoMo-1 weld metal. Apparent stress exponent value of 6.54 was obtained, which indicated that the rate-controlled creep occurred in weldment during creep. A damage tolerance factor of 6.4 in the weldment illustrates that the microstructural degradation is the dominant creep damaging mechanism in the alloy. Meanwhile, the welded joints perform two types of deformation behavior with the variation in applied stress, which resulted from the different parts that govern the creep processing. Also, the morphology evolution of the fracture surfaces confirms the effects of stress level and stress state.


Heat-resistant steel weldment Creep deformation Life assessment TTP (time–temperature parametric) method 



This work was financially supported by the National Natural Science Foundation of China (Grant No. 51475326) and the Demonstration Project of National Marine Economic Innovation (No. BHSF2017-22). The authors also wish to acknowledge the supplier of the steel and welded joint: China Jiangsu Wujin Stainless Steel Pipe Group Co., Ltd.


  1. [1]
    B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Y. Zhang, Mater. Sci. Eng. A 711, 434 (2018)CrossRefGoogle Scholar
  2. [2]
    Y. Zhang, H. Jing, L. Xu, L. Zhao, Y. Han, Y. Zhao, Mater. Sci. Eng. A 686, 102 (2017)CrossRefGoogle Scholar
  3. [3]
    Y. Zhang, H. Jing, L. Xu, L. Zhao, Y. Han, J. Liang, Mater. Charact. 130, 156 (2017)CrossRefGoogle Scholar
  4. [4]
    H. Yin, Y. Gao, Y. Gu, Mater. Des. 105, 66 (2016)CrossRefGoogle Scholar
  5. [5]
    C. Wang, Y. Guo, J. Guo, L. Zhou, Mater. Des. 88, 790 (2015)CrossRefGoogle Scholar
  6. [6]
    P. Yan, Z. Liu, H. Bao, Y. Weng, W. Liu, Mater. Des. 54, 874 (2014)CrossRefGoogle Scholar
  7. [7]
    Y. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, B. Xiao, Mater. Charact. 139, 279 (2018)CrossRefGoogle Scholar
  8. [8]
    X. Xie, C. Chi, H. Yu, J. Dong, M. Zhang, Y. Hu, H. Yang, C. Zhu, H. Yang, C. Zhu, Z. Cui, F. Lin, Research and development of a new austenitic heat- resisting steel SP2215 for 600–620 °C USC boiler superheater/reheater application, in Proceedings from the Eighth International Conference: Advances in Materials Technology for Fossil Power Plants, Electric Power Research Institute, Inc., Albufeira, October 11–14 (2016)Google Scholar
  9. [9]
    J. Dean, J. Campbell, G. Aldrich-Smith, T.W. Clyne, Acta Mater. 80, 56 (2014)CrossRefGoogle Scholar
  10. [10]
    B. Wilshire, P.J. Scharning, Int. Mater. Rev. 53, 91 (2008)CrossRefGoogle Scholar
  11. [11]
    S. Goyal, K. Laha, Mater. Sci. Eng. A 615, 348 (2014)CrossRefGoogle Scholar
  12. [12]
    T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink, Mater. Sci. Eng. A 565, 382 (2013)CrossRefGoogle Scholar
  13. [13]
    T. Sakthivel, S.P. Selvi, K. Laha, Mater. Sci. Eng. A 640, 61 (2015)CrossRefGoogle Scholar
  14. [14]
    J.A. Siefert, S.A. David, Sci. Technol. Weld. Join. 19, 271 (2014)CrossRefGoogle Scholar
  15. [15]
    J.A. Siefert, J.P. Shingledecker, J.N. DuPont, S.A. David, Sci. Technol. Weld. Join. 21, 397 (2016)CrossRefGoogle Scholar
  16. [16]
    W.M. Payten, D.W. Dean, K.U. Snowden, Mater. Sci. Eng. A 527, 1920 (2010)CrossRefGoogle Scholar
  17. [17]
    Y. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, D. Wang, B. Xiao, Mater. Sci. Eng. A 721, 103 (2018)CrossRefGoogle Scholar
  18. [18]
    J.G. Kaufman, Parametric Analyses of High-Temperature Data for Aluminum Alloys (ASM International, Portland, 2008)Google Scholar
  19. [19]
    D. Šeruga, M. Nagode, Mater. Sci. Eng. A 528, 2804 (2011)CrossRefGoogle Scholar
  20. [20]
    G. Dimmler, P. Weinert, H. Cerjak, Int. J. Pres. Ves. Pip. 85, 55 (2008)CrossRefGoogle Scholar
  21. [21]
    H. Ghassemi Armaki, K. Maruyama, M. Yoshizawa, M. Igarashi, Mater. Sci. Eng. A 490, 66 (2008)CrossRefGoogle Scholar
  22. [22]
    S. Manson, A. Haferd, Technical Report Archive & Image Library (1953)Google Scholar
  23. [23]
    W. Bendick, L. Cipolla, J. Gabrel, J. Hald, Int. J. Pres. Ves. Pip. 87, 304 (2010)CrossRefGoogle Scholar
  24. [24]
    R. Orr, O. Sherby, J. Dorn, Trans. Am. Soc. Met. 7, 113 (1953)Google Scholar
  25. [25]
    K. Maruyama, H.G. Armaki, K. Yoshimi, Int. J. Pres. Ves. Pip. 84, 171 (2007)CrossRefGoogle Scholar
  26. [26]
    J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Mater. Sci. Eng. A 428, 270 (2006)CrossRefGoogle Scholar
  27. [27]
    B. Wilshire, A.J. Battenbough, Mater. Sci. Eng. A 443, 156 (2007)CrossRefGoogle Scholar
  28. [28]
    M.T. Whittaker, B. Wilshire, Mater. Sci. Eng. A 527, 4932 (2010)CrossRefGoogle Scholar
  29. [29]
    R.M. Goldhoff (ed.), Development of a Standard Methodology for the Correlation and Extrapolation of Elevated Temperature Creep and Rupture Data, Volume 2: A State-of-the-Art Review, Final Report (Metal Properties Council Inc., New York, 1979)Google Scholar
  30. [30]
    M.K. Booker (ed.), Development of a Standard Methodology for the Correlation and Extrapolation of Elevated Temperature: A Summary of a State-of-the-Art Review and a Workshop. Final Report (Metal Properties Council, Inc., New York, 1974)Google Scholar
  31. [31]
    A. Iseda, H. Okada, H. Semba, M. Igarashi, Energy Mater. 2, 199 (2013)CrossRefGoogle Scholar
  32. [32]
    M.S. Pham, S.R. Holdsworth, K.G.F. Janssens, E. Mazza, Int. J. Plast. 47, 143 (2013)CrossRefGoogle Scholar
  33. [33]
    B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Mater. Sci. Eng. A 690, 104 (2017)CrossRefGoogle Scholar
  34. [34]
    B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Z. Tang, Mater. Sci. Eng. A 707, 466 (2017)CrossRefGoogle Scholar
  35. [35]
    M.F. Ashby, B.F. Dyson, Creep damage mechanics and micromechanisms, in Proceedings of the 6th International Conference on Fracture (ICF6), National Aeronautical Laboratory, New Delhi, 4–10 December (1984)Google Scholar
  36. [36]
    S. Tu, R. Wu, R. Sandström, Int. J. Pres. Ves. Pip. 58, 345 (1994)CrossRefGoogle Scholar
  37. [37]
    S. Tu, R. Sandström, Int. J. Pres. Ves. Pip. 57, 335 (1994)CrossRefGoogle Scholar
  38. [38]
    A.A. Benzerga, J. Leblond, A. Needleman, V. Tvergaard, Int. J. Fract. 201, 29 (2016)CrossRefGoogle Scholar
  39. [39]
    L. Zhao, N. Alang, K. Nikbin, Fatigue Fract. Eng. Mater. 41, 456 (2018)CrossRefGoogle Scholar
  40. [40]
    M.F. Ashby, C. Gandhi, D.M.R. Taplin, in Perspectives in Creep Fracture, ed. by M.F. Ashby, L.M. Brown (Pergamon, Oxford, 1983), p. 699Google Scholar
  41. [41]
    J. Wen, S. Tu, F. Xuan, X. Zhang, X. Gao, J. Mater. Sci. Technol. 32, 695 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Zhang
    • 1
    • 2
  • Hong-Yang Jing
    • 1
    • 2
  • Lian-Yong Xu
    • 1
    • 2
    Email author
  • Yong-Dian Han
    • 1
    • 2
  • Lei Zhao
    • 1
    • 2
  • Xi-Shan Xie
    • 3
  • Qiu-Hua Zhu
    • 4
  1. 1.School of Materials Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Advanced Joining TechnologyTianjinChina
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology, BeijingBeijingChina
  4. 4.Jiangsu Wujin Stainless Steel Pipe Group Co., LtdChangzhouChina

Personalised recommendations