Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 1, pp 89–97 | Cite as

Effects of Lead on the Initial Corrosion Behavior of 316LN Stainless Steel in High-Temperature Alkaline Solution

  • Jia-Min Shao
  • Cui-Wei Du
  • Xin Zhang
  • Li-Ying Cui


The effect of lead on the initial corrosion behavior of 316LN stainless steel has been investigated by U-bend immersion experiments in 4 wt% NaOH solutions at 300 °C. Follow-up studies after soaking were carried out by scanning electron microscope, energy dispersive X-ray spectrometer, X-ray photoelectron spectrometer, Auger electron spectroscopy and Raman spectroscopy. The results show that lead affects the properties of the oxide film by changing the thickness and composition, which leads to an increase in the sensitivity of stress corrosion cracking of 316LN stainless steel. Pits and cracks appeared on the surface of 316LN stainless steel under both lead-free and lead-containing conditions. The corrosion products were oxides of Fe, Cr and Ni, and the main spinel structure on the surface of the film was NiCr2O4 under both conditions. However, in the presence of lead, the cracks and pits were more obvious, the thickness of the film increased from 50 to 200 nm, and the amount of protective NiCr2O4 decreased. Lead was concluded to be involved in the dehydration reactions in the form of Pb(OH)2, which affected the normal dehydration process of the hydroxides and inhibited the formation of spinel structures. Because of the above characteristics of lead, the stability of the oxide film and its protection of 316LN stainless steel were reduced.


PbSCC Oxide film 316LN High temperature 



This work was supported by the National Basic Research Program of China (973 Program Project No. 2014CB643300) and the Chinese National Natural Science Foundation (Nos. U1260201 and 51471034).

Compliance with Ethical Standards

Conflict of interest

The authors confirm that this article content has no conflict of interest.


  1. [1]
    T. Terachi, T. Yamada, T. Miyamoto, K. Arioka, J. Nucl. Mater. 426, 59 (2012)CrossRefGoogle Scholar
  2. [2]
    J. Chen, Q. Xiao, Z. Lu, X. Ru, H. Peng, Q. Xiong, H. Li, J. Nucl. Mater. 489, 137 (2017)CrossRefGoogle Scholar
  3. [3]
    M. Wang, L. Chen, X. Liu, X. Ma, Corros. Sci. 81, 117 (2014)CrossRefGoogle Scholar
  4. [4]
    H. Ming, Z. Zhang, S. Wang, J. Wang, E. Han, W. Ke, Mater. Corros. 66, 869 (2015)CrossRefGoogle Scholar
  5. [5]
    F.Q. Yang, H. Xue, L.Y. Zhao, X.R. Fang, Nucl. Eng. Des. 278, 686 (2014)CrossRefGoogle Scholar
  6. [6]
    Y. Han, J. Mei, Q. Peng, E. Han, W. Ke, Corros. Sci. 112, 625 (2016)CrossRefGoogle Scholar
  7. [7]
    H. Mahdi, M. Mahdi, R. Jalali, Eng. Fail. Anal. 79, 431 (2017)CrossRefGoogle Scholar
  8. [8]
    D. Xia, Y. Behnamian, H. Feng, H. Fan, L. Yang, C. Shen, J. Luo, Y. Lu, S. Klimas, Corros. Sci. 87, 265 (2014)CrossRefGoogle Scholar
  9. [9]
    D. Du, K. Chen, H. Lu, L. Zhang, X. Shi, X. Xu, P.L. Andresen, Corros. Sci. 110, 134 (2016)CrossRefGoogle Scholar
  10. [10]
    D. Kim, H.P. Kim, S.S. Hwang, Nucl. Eng. Technol. 45, 67 (2013)CrossRefGoogle Scholar
  11. [11]
    S. Persaud, A. Carcea, J. Huang, A. Korinek, G. Botton, R. Newman, Micron 61, 62 (2014)CrossRefGoogle Scholar
  12. [12]
    H.P. Seifert, S. Ritter, Corros. Sci. 108, 134 (2016)CrossRefGoogle Scholar
  13. [13]
    J. Huang, X. Wu, E. Han, Corros. Sci. 51, 2976 (2009)CrossRefGoogle Scholar
  14. [14]
    B. Peng, B.T. Lu, J.L. Luo, Y.C. Lu, H.Y. Ma, J. Nucl. Mater. 378, 333 (2008)CrossRefGoogle Scholar
  15. [15]
    B.T. Lu, J.L. Luo, Y.C. Lu, J. Nucl. Mater. 429, 305 (2012)CrossRefGoogle Scholar
  16. [16]
    R.W. Staehle, J.A. Gorman, Corrosion 60, 115 (2003)CrossRefGoogle Scholar
  17. [17]
    N. Li, S. Shi, J. Luo, J. Lu, N. Wang, Mater. Res. Lett. 4, 1 (2016)CrossRefGoogle Scholar
  18. [18]
    S. Cissé, L. Laffont, B. Tanguy, M. Lafont, E. Andrieu, Corros. Sci. 56, 209 (2012)CrossRefGoogle Scholar
  19. [19]
    J. Huang, X. Wu, E. Han, Corros. Sci. 52, 3444 (2010)CrossRefGoogle Scholar
  20. [20]
    H. Sun, X. Wu, E. Han, Corros. Sci. 51, 2840 (2009)CrossRefGoogle Scholar
  21. [21]
    R.P. Matthews, R.D. Knusten, J.E. Westraadt, T. Couvant, Corros. Sci. 125, 175 (2017)CrossRefGoogle Scholar
  22. [22]
    L. Freire, M.J. Carmezim, M.G.S. Ferreira, M.F. Montemor, Electrochim. Acta 55, 6174 (2010)CrossRefGoogle Scholar
  23. [23]
    D. Shintani, T. Ishida, H. Izumi, T. Fukutsuka, Y. Matsuo, Y. Sugie, Corros. Sci. 50, 2840 (2008)CrossRefGoogle Scholar
  24. [24]
    X. Zhang, D.W. Shoesmith, Corros. Sci. 76, 424 (2013)CrossRefGoogle Scholar
  25. [25]
    A. Palani, B.T. Lu, L.P. Tian, J.L. Luo, Y.C. Lu, J. Nucl. Mater. 396, 189 (2010)CrossRefGoogle Scholar
  26. [26]
    F. Shi, P.C. Tian, N. Jia, Z.H. Ye, Y. Qi, C.M. Liu, X.W. Li, Corros. Sci. 107, 49 (2016)CrossRefGoogle Scholar
  27. [27]
    B.T. Lu, J.L. Luo, Y.C. Lu, J. Electrochem. Soc. 154, C379 (2007)CrossRefGoogle Scholar
  28. [28]
    R.L. Zhu, L.T. Zhang, J.Q. Wang, Z.M. Zhang, E.H. Han, J. Chin. Soc. Corros. Prot. 38, 54 (2018)Google Scholar
  29. [29]
    W. Kuang, X. Wu, E. Han, Corros. Sci. 63, 259 (2012)CrossRefGoogle Scholar
  30. [30]
    W. Kuang, X. Wu, E. Han, Corros. Sci. 69, 197 (2013)CrossRefGoogle Scholar
  31. [31]
    Q. Hou, Z.Y. Liu, C.T. Li, X.G. Li, Appl. Surf. Sci. 426, 514 (2017)CrossRefGoogle Scholar
  32. [32]
    Z.Y. Liu, X.G. Li, C.W. Du, Y.F. Cheng, Corros. Sci. 51, 2863 (2009)CrossRefGoogle Scholar
  33. [33]
    Z.Y. Liu, X.G. Li, Y.F. Cheng, Electrochim. Acta 56, 4167 (2011)CrossRefGoogle Scholar
  34. [34]
    B. Zhang, S. Hao, J. Wu, X. Li, C. Li, X. Di, Y. Huang, Mater. Charact. 131, 168 (2017)CrossRefGoogle Scholar
  35. [35]
    Z.C. Feng, X.Q. Cheng, C.F. Dong, L. Xu, X.G. Li, Corros. Sci. 52, 3646 (2010)CrossRefGoogle Scholar
  36. [36]
    NIST XPS Database. Accessed 12 Apr 2018
  37. [37]
    H. Luo, C.F. Dong, K. Xiao, X.G. Li, Appl. Surf. Sci. 258, 631 (2011)CrossRefGoogle Scholar
  38. [38]
    L.J. Oblonsky, T.M. Devine, Corros. Sci. 37, 17 (1995)CrossRefGoogle Scholar
  39. [39]
    H.K. Ji, I.S. Hwang, Nucl. Eng. Des. 235, 1029 (2014)Google Scholar
  40. [40]
    R. Sánchez-Tovar, R. Leiva-García, J. García-Antón, Thin Solid Films 576, 1 (2015)CrossRefGoogle Scholar
  41. [41]
    Z. Karmiol, D. Chidambaram, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 47, 2498 (2016)CrossRefGoogle Scholar
  42. [42]
    H. Luo, H. Su, C. Dong, K. Xiao, X. Li, Constr. Build. Mater. 96, 502 (2015)CrossRefGoogle Scholar
  43. [43]
    M.G. Faichuk, S. Ramamurthy, W.M. Lau, Corros. Sci. 53, 1383 (2011)CrossRefGoogle Scholar
  44. [44]
    M. Liu, X. Cheng, X. Li, Y. Pan, J. Li, Appl. Surf. Sci. 389, 1182 (2016)CrossRefGoogle Scholar
  45. [45]
    Q. Hou, Z.Y. Liu, C.T. Li, X.G. Li, Corros. Sci. 128, 154 (2017)CrossRefGoogle Scholar
  46. [46]
    J. Soltis, Corros. Sci. 90, 5 (2015)CrossRefGoogle Scholar
  47. [47]
    L. Li, X.G. Li, C.F. Dong, Y.Z. Huang, Electrochim. Acta 54, 6389 (2009)CrossRefGoogle Scholar
  48. [48]
    J. Xu, X. Wu, E. Han, Electrochim. Acta 71, 219 (2012)CrossRefGoogle Scholar
  49. [49]
    Z.Y. Liu, X.G. Li, Y.F. Cheng, Electrochem. Commun. 12, 936 (2010)CrossRefGoogle Scholar
  50. [50]
    Z.Y. Liu, L. Lu, Y.Z. Huang, C.W. Du, X.G. Li, Corrosion 70, 678 (2014)CrossRefGoogle Scholar
  51. [51]
    B. Ter-Ovanessian, B. Normand, J. Solid State Electrochem. 20, 9 (2016)CrossRefGoogle Scholar
  52. [52]
    B.T. Lu, J.L. Luo, Y.C. Lu, Electrochim. Acta 87, 824 (2013)CrossRefGoogle Scholar
  53. [53]
    H. Strehblow, Electrochim. Acta 212, 630 (2016)CrossRefGoogle Scholar
  54. [54]
    D. Macdonald, Electrochim. Acta 56, 1761 (2011)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Corrosion and Protection CenterUniversity of Science and Technology BeijingBeijingChina
  2. 2.Nuclear and Radiation Safety CenterMinistry of Environmental Protection of P. R. ChinaBeijingChina

Personalised recommendations