Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 2, pp 245–252 | Cite as

Microstructure Evolution of Extruded Mg–6Gd Alloy Under 175 °C and 150 MPa

  • Rong-Guang LiEmail author
  • Farhan Asghar
  • Jing-Huai Zhang
  • Guang-Yan Fu
  • Qun Liu
  • Bei-Tao Guo
  • Yong-Mei Yu
  • Shu-Guo Guo
  • Yong Su
  • Xue-Jiao Chen
  • Lin ZongEmail author
Article
  • 44 Downloads

Abstract

The tensile creep behavior of extruded Mg–6Gd alloy, having the tensile yield strength of ~ 110 MPa at 175 °C, has been investigated under 175 °C and 150 MPa. In this study, the extruded Mg–6Gd sample exhibits the total tensile strain of ~ 10.5% after the creep time of 1100 h, and the fast plastic strain of ~ 4.6% at the beginning of the creep test. The microstructure result suggests that the dislocation deformation is the main deformation mode during creep, and the grains with orientation close to 〈0001〉 || ED disappear after creep. The creep process containing a low creep strain has no effective promotion for the precipitation compared with the aging process without strain. The origination of creep crack is related to the formation of precipitate-free zone during creep. The work offers an important implication to research the microstructure evolution under an applied stress in a weak aging response Mg alloy.

Keywords

Mg–Gd alloy Texture Creep Precipitates Crack 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51201158 and 51871069), Natural Science Foundation of Liaoning Province of China (20180550299 and 20180551117), the Natural Science Foundation of Heilongjiang Province of China (E2017030), the Science Research Project of Liaoning Province Education Department (Grant Nos. L2016004 and LQ2017014), the Liaoning Province Doctor Startup Fund (Grant No. 20170520390), the Fundamental Research Funds for the Central Universities (Grant No. HEUCFM181002), and the Shenyang Science and Technology Plan Projects (Grant No. F16-228-6-00).

References

  1. [1]
    Y.M. Zhu, M.Z. Bian, J.F. Nie, Acta Mater. 127, 505 (2017)CrossRefGoogle Scholar
  2. [2]
    R.G. Li, R.L. Xin, Q. Liu, J.A. Liu, G.Y. Fu, L. Zong, Y.M. Yu, S.G. Guo, Mater. Character. 109, 43 (2015)CrossRefGoogle Scholar
  3. [3]
    J. Zheng, Z. Li, L. Tan, X. Xu, R. Luo, B. Chen, Mater. Character. 117, 76 (2016)CrossRefGoogle Scholar
  4. [4]
    X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, H.Y. Wang, J. Mater. Sci. Technol. 34, 245 (2018)CrossRefGoogle Scholar
  5. [5]
    P.J. Apps, H. Karimzadeh, J.F. King, G.W. Lorimer, Scr. Mater. 48, 1023 (2003)CrossRefGoogle Scholar
  6. [6]
    J.F. Nie, X. Gao, S.M. Zhu, Scr. Mater. 53, 1049 (2005)CrossRefGoogle Scholar
  7. [7]
    X. Gao, J.F. Nie, Enhanced precipitation-hardening in Mg–Gd alloys containing Ag and Zn. Scr. Mater. 58, 619 (2008)CrossRefGoogle Scholar
  8. [8]
    K. Yamada, H. Hoshikawa, S. Maki, T. Ozaki, Y. Kuroki, S. Kamado, Y. Kojima, Scr. Mater. 61, 636 (2009)CrossRefGoogle Scholar
  9. [9]
    Y. Hu, J. Deng, C. Zhao, F. Pan, J. Peng, J. Mater. Sci. 46, 5838 (2011)CrossRefGoogle Scholar
  10. [10]
    Y. Hu, J. Deng, C. Zhao, J. Wang, F. Pan, Trans. Nonferrous Met. Soc. China 21, 732 (2011)CrossRefGoogle Scholar
  11. [11]
    J.F. Nie, Metall. Mater. Trans. A 43, 3891 (2012)CrossRefGoogle Scholar
  12. [12]
    Q. Peng, H. Dong, L. Wang, Y. Wu, L. Wang, Mater. Character. 59, 983 (2008)CrossRefGoogle Scholar
  13. [13]
    G. Li, J. Zhang, R. Wu, Y. Feng, S. Liu, X. Wang, Y. Jiao, Q. Yang, J. Meng, J. Mater. Sci. Technol. 34, 1076 (2018)CrossRefGoogle Scholar
  14. [14]
    A.P. Druzhkov, D.A. Perminov, Mater. Sci. Eng. A 527, 3877 (2010)CrossRefGoogle Scholar
  15. [15]
    J. Čížek, I. Procházka, B. Smola, I. StulolaČížek, J. Alloys Compd. 430, 92 (2007)CrossRefGoogle Scholar
  16. [16]
    T. Honma, T. Ohkubo, S. Kamado, K. Hono, Acta Mater. 55, 4137 (2007)CrossRefGoogle Scholar
  17. [17]
    H. Liu, W.F. Xu, L.M. Peng, W.J. Ding, J.F. Nie, Comput. Mater. Sci. 130, 152 (2017)CrossRefGoogle Scholar
  18. [18]
    S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, J. Alloys Compd. 427, 316 (2007)CrossRefGoogle Scholar
  19. [19]
    R.G. Li, J.F. Nie, G.J. Huang, Y.C. Xin, Q. Liu, Scr. Mater. 64, 950 (2011)CrossRefGoogle Scholar
  20. [20]
    K.Y. Zheng, J. Dong, X.Q. Zeng, W.J. Ding, Mater. Sci. Eng. A 489, 44 (2008)CrossRefGoogle Scholar
  21. [21]
    W.H. Wang, D. Wu, R.S. Chen, X.N. Zhang, J. Mater. Sci. Technol. 34, 1236 (2018)CrossRefGoogle Scholar
  22. [22]
    F. Guo, X. Luo, Y. Xin, G. Wu, Q. Liu, J. Alloys Compd. 704, 406 (2017)CrossRefGoogle Scholar
  23. [23]
    M. Wang, R. Xin, B. Wang, Q. Liu, Mater. Sci. Eng. A 528, 2941 (2011)CrossRefGoogle Scholar
  24. [24]
    T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61, 644 (2009)CrossRefGoogle Scholar
  25. [25]
    N. Stanford, D. Atwell, M.R. Barnett, Acta Mater. 58, 6773 (2010)CrossRefGoogle Scholar
  26. [26]
    H. Fu, B. Ge, Y. Xin, R. Wu, C. Fernandez, J. Huang, Q. Peng, Nano Lett. 17, 6117 (2017)CrossRefGoogle Scholar
  27. [27]
    B. Jiang, C.H. Zhang, T. Wang, Z. Qu, R. Wu, M. Zhang, Mater. Des. 34, 863 (2012)CrossRefGoogle Scholar
  28. [28]
    R. Wu, Y. Yan, G. Wang, L.E. Murr, W. Han, Z. Zhang, M. Zhang, Int. Mater. Rev. 60, 65 (2015)CrossRefGoogle Scholar
  29. [29]
    Y. Xin, X. Zhou, Y. Wu, H. Yu, Q. Liu, Mater. Sci. Eng. A 640, 118 (2015)CrossRefGoogle Scholar
  30. [30]
    Y. Xin, L. Lv, H. Chen, C. He, H. Yu, Q. Liu, Mater. Sci. Eng. A 662, 95 (2016)CrossRefGoogle Scholar
  31. [31]
    A. Chapuis, Q. Liu, Comput. Mater. Sci. 97, 121 (2015)CrossRefGoogle Scholar
  32. [32]
    J. Sun, L. Jin, S. Dong, J. Dong, Z. Zhang, F. Wang, W. Ding, A.A. Luo, Mater. Des. 122, 164 (2017)CrossRefGoogle Scholar
  33. [33]
    R. Li, R. Xin, A. Chapuis, Q. Liu, G. Fu, L. Zong, Y. Yu, B. Guo, S. Guo, Mater. Charact. 112, 81 (2016)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals (CSM) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rong-Guang Li
    • 1
    Email author
  • Farhan Asghar
    • 1
  • Jing-Huai Zhang
    • 2
  • Guang-Yan Fu
    • 1
  • Qun Liu
    • 1
  • Bei-Tao Guo
    • 1
  • Yong-Mei Yu
    • 1
  • Shu-Guo Guo
    • 1
  • Yong Su
    • 1
  • Xue-Jiao Chen
    • 1
  • Lin Zong
    • 1
    Email author
  1. 1.School of Mechanical EngineeringShenyang University of Chemical TechnologyShenyangChina
  2. 2.Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Material Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations