Advertisement

Acta Metallurgica Sinica (English Letters)

, Volume 32, Issue 5, pp 573–584 | Cite as

Thermal Conductivity and Tensile Properties of Carbon Nanofiber-Reinforced Aluminum-Matrix Composites Fabricated via Powder Metallurgy: Effects of Ball Milling and Extrusion Conditions on Microstructures and Resultant Composite Properties

  • Fumio OgawaEmail author
  • Shuji Yamamoto
  • Chitoshi Masuda
Article
  • 30 Downloads

Abstract

Carbon nanofiber (CNF)-reinforced aluminum-matrix composites were fabricated via ball milling and spark plasma sintering (SPS), SPS followed by hot extrusion and powder extrusion. Two mixing conditions of CNF and aluminum powder were adopted: milling at 90 rpm and milling at 200 rpm. After milling at 90 rpm, the mixed powder was sintered using SPS at 560 °C. The composite was then extruded at 500 °C at an extrusion ratio of 9. Composites were also fabricated via powder extrusion of powder milled at 200 rpm and 550 °C with an extrusion ratio of 9 (R9) or 16 (R16). The thermal conductivity and tensile properties of the resultant composites were evaluated. Anisotropic thermal conductivity was observed even in the sintered products. The anisotropy could be controlled via hot extrusion. The thermal conductivity of composites fabricated via powder extrusion was higher than those fabricated using other methods. However, in the case of specimens with a CNF volume fraction of 4.0%, the thermal conductivity of the composite fabricated via SPS and hot extrusion was the highest. The highest thermal conductivity of 4.0% CNF-reinforced composite is attributable to networking and percolation of CNFs. The effect of the fabrication route on the tensile strength and ductility was also investigated. Tensile strengths of the R9 composites were the highest. By contrast, the R16 composites prepared under long heating duration exhibited high ductility at CNF volume fractions of 2.0% and 5.0%. The microstructures of composites and fracture surfaces were observed in detail, and fracture process was elucidated. The results revealed that controlling the heating and plastic deformation during extrusion will yield strong and ductile composites.

Keywords

Al composite Carbon nanofiber Ball milling Hot extrusion Microstructure and performance 

Notes

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Fumio Ogawa would like to express his sincere gratitude to the Mitsubishi Material Corporation for their financial support. Financial supports from the Light Metal Educational Foundation Inc. and the Japan Aluminium Association are also greatly acknowledged. Dr. Toshiyuki Nishimura of the National Institute for Materials Science is acknowledged for his support in the measurement of thermal conductivity of composites.

References

  1. [1]
    S. Berber, Y.K. Kwon, D. Tománek, Phys. Rev. Lett. 84, 4613 (2000)CrossRefGoogle Scholar
  2. [2]
    B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R.O. Ritchie, Mater. Sci. Eng. A 334, 173 (2002)CrossRefGoogle Scholar
  3. [3]
    M.F. Yu, O. Lourie, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000)CrossRefGoogle Scholar
  4. [4]
    M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 39, 535 (2013)CrossRefGoogle Scholar
  5. [5]
    S. Suresh, A. Mortensen, A. Needleman, Fundamentals of Metal Matrix Composites (Butterworth-Heinemann, Oxford, 1993)Google Scholar
  6. [6]
    D.B. Miracle, Compos. Sci. Technol. 65, 2526 (2005)CrossRefGoogle Scholar
  7. [7]
    K.U. Kainer, Metal Matrix Composites. Custom-Made Materials for Automotive and Aerospace Engineering (Wiley, Weinheim, 2006)CrossRefGoogle Scholar
  8. [8]
    R. George, K.T. Kashyap, R. Rahul, S. Yamdagnim, Scr. Mater. 53, 1159 (2005)CrossRefGoogle Scholar
  9. [9]
    H. Uozumi, K. Kobayashi, C. Masuda, M. Yoshida, Adv. Mater. Res. 15–17, 209 (2006)CrossRefGoogle Scholar
  10. [10]
    C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, Q. Cui, Adv. Mater. 19, 1128 (2007)CrossRefGoogle Scholar
  11. [11]
    H.J. Choi, G.B. Kwon, G.Y. Lee, D.H. Bae, Scr. Mater. 59, 360 (2008)CrossRefGoogle Scholar
  12. [12]
    T. Laha, Y. Chen, D. Lahiri, A. Agarwal, Compos. Part A 40, 589 (2009)CrossRefGoogle Scholar
  13. [13]
    H. Choi, J. Shin, B. Min, J. Park, D. Bae, J. Mater. Res. 24, 2610 (2009)CrossRefGoogle Scholar
  14. [14]
    A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, P. Borah, Mater. Sci. Eng. A 508, 167 (2009)CrossRefGoogle Scholar
  15. [15]
    A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, Compos. Sci. Technol. 70, 2237 (2010)CrossRefGoogle Scholar
  16. [16]
    H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki, Compos. Sci. Technol. 70, 546 (2010)CrossRefGoogle Scholar
  17. [17]
    S.R. Bakshi, A. Agarwal, Carbon 49, 533 (2011)CrossRefGoogle Scholar
  18. [18]
    H. Kwon, H. Kurita, M. Leparoux, A. Kawasaki, J. Nanosci. Nanotechnol. 11, 4119 (2011)CrossRefGoogle Scholar
  19. [19]
    L. Jiang, Z. Li, G. Fan, L. Cao, D. Zhang, Scr. Mater. 66, 331 (2012)CrossRefGoogle Scholar
  20. [20]
    S.E. Shin, H.J. Choi, D.H. Bae, J. Compos. Mater. 47, 2249 (2012)CrossRefGoogle Scholar
  21. [21]
    J. Wu, H. Zhang, Y. Zhang, X. Wang, Mater. Des. 41, 344 (2012)CrossRefGoogle Scholar
  22. [22]
    B. Chen, S. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi, K. Kondoh, Mater. Des. 72, 1 (2015)CrossRefGoogle Scholar
  23. [23]
    H. Kwon, M. Leparoux, Nanotechnology 23, 415701 (2012)CrossRefGoogle Scholar
  24. [24]
    F. Ogawa, C. Masuda, Compos. Part A 71, 84 (2015)CrossRefGoogle Scholar
  25. [25]
    F. Ogawa, S. Yamamoto, C. Masuda, Mater. Sci. Eng. A 711, 460 (2018)CrossRefGoogle Scholar
  26. [26]
    F. Ogawa, C. Masuda, H. Fujii, J. Mater. Sci. 53, 5036 (2018)CrossRefGoogle Scholar
  27. [27]
    C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, J. Appl. Phys. 81, 6692 (1997)CrossRefGoogle Scholar
  28. [28]
    V.M. Segal, S. Ferrasse, F. Alford, Mater. Sci. Eng. A 422, 321 (2006)CrossRefGoogle Scholar
  29. [29]
    S. Kikuchi, T. Imai, H. Kubozono, Y. Nakai, M. Ota, A. Ueno, K. Ameyama, Int. J. Fatigue 92, 616 (2016)CrossRefGoogle Scholar
  30. [30]
    F. Ogawa, C. Masuda, J. JILM 63, 350 (2013)CrossRefGoogle Scholar
  31. [31]
    Y. Wang, M. Chen, F. Zhou, E. Ma, Lett. Nat. 419, 912 (2002)CrossRefGoogle Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, College of Science and EngineeringRitsumeikan UniversityKusatsu-shiJapan
  2. 2.Kanto Gakuin UniversityOdawara-shiJapan
  3. 3.Kagami Memorial Institute for Materials Science and TechnologyWaseda UniversityTokyoJapan

Personalised recommendations